

Bridge Report I-275 Bridge over Elm Street Knox County, Tennessee TDOT P.E. No. 47I275-F2-002 TDOT Pin No. 124437.00 Federal Project No. BR-I-275-3(136) S&ME Project No. 22430250

PREPARED FOR

HDR, Inc. 120 Brentwood Commons Way, Suite 525 Brentwood, Tennessee 37027

PREPARED BY:

S&ME, Inc. 1413 Topside Road Knoxville, TN 37777

June 9, 2023

June 9, 2023

HDR, Inc. 120 Brentwood Commons Way, Suite 525 Brentwood, Tennessee 37027

Attention: Stan King, PE, PLS

Reference: Report of Geotechnical Services I-275 – Bridge over Elm Street Knox County, Tennessee TDOT P.E. No. 471275-F2-002 TDOT Pin No. 124437.00 Federal Project No. BR-I-275-3(136) S&ME Proposal No. 22430250

Dear Mr. King

S&ME, Inc. (S&ME) has completed our evaluation for the I-275 Bridge over Elm Street in Knoxville, Tennessee. We performed the exploration in general accordance with S&ME Proposal No. 22430250 dated November 10, 2022, and the Geotech Subconsultant Agreement between our firms dated December 7, 2021.

This report presents our understanding of the project, documents our findings, and presents our recommendations for the above referenced bridge replacement project. S&ME, Inc. appreciates the opportunity to be of service to HDR, and we look forward to helping you through project completion. Please contact us if you have any questions.

Sincerely,

S&ME, Inc.

Joshua A. Baines, El Geotechnical Team Leader

jbaines@smeinc.com

Daniel R. Boles, PE Senior Engineer TN PE No. 103726 dboles@smeinc.com **Bridge Foundation Report** TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

TDOT PIN No. 124437.00

Table of Contents

1.0	Exec	utive Summary	1			
2.0	Intro	Introduction				
3.0	Geol	logy and Site Conditions	2			
	3.1	Geology	2			
4.0	Subs	surface Exploration Procedures	3			
5.0		surface Conditions				
	5.1	Test Boring Summary				
	5.2	Groundwater				
6.0	Labo	oratory Testing	9			
7.0		ge Foundation Recommendations and Considerations				
	7.1	Foundations				
	7.2	Seismic Considerations				
	7.3	Excavation	11			
	7.4	Ground Water Considerations	11			
8.0	Limi	tations of Report	11			

Bridge Foundation Report TDOT P.E. No. 471275-F2-002 Federal Project No.BR-1-275-3(136) S&ME Project No. 22430250

Appendices

Appendix I	Foundation Data Sheets
Appendix II	Field Exploration Procedures Test Boring/Pit Record Legend Test Boring Records
	Rock Core Photographs
Appendix III	Laboratory Test Procedures Laboratory Test Results
Appendix IV Important Information about	Your Geotechnical Engineering Report

Bridge Foundation Report TDOT P.E. No. 47I275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

1.0 Executive Summary

S&ME, Inc. (S&ME) has completed our evaluation for the I-275 bridge over Elm Street in Knoxville Tennessee. This report includes a discussion of the exploration findings and our conclusions and recommendations specific to the bridge. Please see our abutment retaining wall report for recommendations regarding the abutment retaining walls.

This summary is presented for the convenience of the reader. The full report text should be studied and understood before preparing an estimation of quantities or preparing designs based on this report, as it contains important information and recommendations that are not included in this brief summary.

The existing foundations for Bents 1, 2 and 3 are planned to be used to support the new bridge superstructure dead, live, and wind loads with the longitudinal loads (braking and temperature) assumed to be resisted by the abutment retaining walls through the integral end bents. The existing foundations are a combination of shallow footings bearing on bedrock and driven concrete piles bearing on bedrock. Based on our review of the subsurface information, the provided bridge plans (existing and proposed), and project discussions, the planned loads on the existing foundations are less than or essentially the same as the original foundation design loads. Given the existing bridge foundations are performing adequately and the loads are essentially the same or less, we believe reuse of the existing bridge foundations is appropriate assuming the existing foundations meet current TDOT standard design criteria. Additionally, TDOT Structures Division has reviewed the existing foundations for reuse as part of the proposed foundation system and has advised that no further investigations are required.

New shallow spread foundations between the existing foundations for the project are assumed to only carry the precast cap and retaining wall or pier wall loads for the new bridge. Based on our review of the subsurface information collected for the bridge, and the provided bridge plans and loads, we recommend shallow foundation support for the new bridge abutment retaining walls and pier wall on the underlying hard residual silts and clays and very dense weathered rock (weathered shale); soils and weathered rock with SPT N-values of 30 bpf and greater. Any fill material encountered, such as backfill for the existing foundations, will need to be excavated/removed to expose the underlying hard residual soils for foundation support.

2.0 Introduction

Initial project information was provided to us by Mr. Stan King, PE, PLS of HDR via phone and email correspondence with Mr. Jeff Doubrava, PE between June 28 and June 30, 2022. Mr. King provided us with a PDF document of notes from a scoping meeting held between HDR and TDOT on April 13, 2022. The notes contain an outline of the planned scope discussed during that meeting along with a site location plan and conceptual bridge plan and elevation drawings. Subsequently, in March and April 2023, Mr. Carter Bearden provided bridge layout sheets and foundations loadings.

We understand that the existing I-275 Bridge over Elm Street will be replaced. The existing bridge is approximately 180 feet long and 144 feet wide carrying 8 lanes of traffic along I-275 over Elm Street. The existing bridge is composed of four spans, each approximately 25, 42, 41, and 25 feet long respectively. The planned bridge will be the same width with only two spans. Each of the spans of the planned bridge will be approximately 42 feet in length for an overall bridge length of about 84 feet. The shortened overall length of the new bridge will be

Bridge Foundation Report TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

accomplished by bringing the bridge abutments closer to Elm Street. Maintaining the existing vertical clearance under I-75 is required.

The existing slopes adjacent to the existing abutments will be eliminated as the new abutments will be located along the existing Bridge Bents 1 and 3 adjacent to either side of Elm Street and new abutment retaining walls will be constructed. The existing foundations for Bents 1 and 3 will be maintained and incorporated into the new bridge abutments. The existing foundations are assumed to carry all the superstructure dead, live and wind loads. New shallow spread foundations installed between the existing foundations are assumed to only carry the precast cap and retaining wall loads. Longitudinal loads (braking and temperature) are assumed to be resisted by retaining walls through integral end bents. The foundations for existing Bent 1 are a combination of shallow spread footings and piles, while existing Bent 3 is supported on piles.

The middle bent of the existing bridge (Bent 2) located along the center of Elm Street will be maintained and incorporated into the new bridge design as well. A new pier wall will be constructed along existing Bent 2. The existing substructure is assumed to carry all the superstructure dead, live, wind and braking loads. New shallow spread foundations installed between the existing foundations are assumed to only carry the precast cap and pier wall loads. Bent 2 of the existing bridge is supported on shallow spread footings. The provided maximum service and strength bearing pressures for the new footings, as well as the maximum service and strength bearing pressures and loads on the existing footings and piles are included in Appendix I. The maximum service and strength bearing pressures for the new footings range from 2.28 to 3.25 and 3.47 to 4.06 kips per square foot (ksf), respectively.

We understand that the new shallow spread foundations will be constructed while the existing bridge is still in service. The contractor will need to protect the existing bridge structure and foundations as well as provide shoring as needed.

3.0 Geology and Site Conditions

3.1 Geology

The project site lies within the Appalachian Valley and Ridge Physiographic Province of East Tennessee. This Province is characterized by elongated, northeasterly-trending ridges formed on highly resistant sandstone and shale. Between ridges, broad valleys and rolling hills are formed primarily on less resistant limestone, dolomite, and shale.

Published geologic information indicates this site is underlain by bedrock of the Ottosee Shale formation of the Chickamauga Group. This formation is primarily composed of calcareous shale with minor amounts of coarsely crystalline, fossiliferous limestone (i.e. marble). The Ottosee Shale formation typically weathers to produce a tan or yellowish-brown clay residual soil with weathered shale fragments.

The boundary between soil and rock is not sharply defined in this geologic setting and there often is a transitional zone, termed "weathered rock" overlying competent bedrock. Weathering is facilitated by fractures, joints, and the presence of less resistant rock types. Consequently, the profile of the weathered rock and hard rock is quite irregular and erratic, even over short horizontal distances. Also, it is not unusual to find lenses and boulders of hard rock and/or zones of weathered rock within the soil mantle well above the general bedrock level.

Bridge Foundation Report TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

Since the bedrock underlying this site contains carbonate rock (i.e. limestone/dolomite), it is susceptible to the hazards of irregular weathering, cave and cavern conditions, and overburden sinkholes. Carbonate rock, while appearing very hard and resistant, is soluble in slightly acidic water. This characteristic, plus differential weathering of the bedrock mass is responsible for these hazards. Of these hazards, the occurrence of sinkholes is potentially the most damaging to overlying soil-supported structures. Sinkholes occur primarily due to differential weathering of the bedrock and flushing or raveling of overburden soil into the cavities within the bedrock. This loss of solids creates a cavity, or dome, in the overburden. Growth of the cavity over time, or excavation over the dome, can create a condition in which rapid subsidence, or collapse, of the roof of the dome occurs.

A certain degree of risk with respect to sinkhole formation and subsidence should be considered with any site located within geologic areas underlain by potentially soluble rock units. While a rigorous effort to assess the potential for sinkhole formation on this site was beyond the scope of this evaluation, our borings did not encounter obvious indications of sinkhole development. In addition, we did not observe any surface signs of sinkhole activity at the site. However, some closed depressions, which denote past sinkhole activity, are shown on the United States Geological Survey (USGS) topographic map in the area of the site. It is our opinion the risk of sinkhole development at this site is comparable to other sites located within similar geologic settings which have been developed successfully. However, the owner must be willing to accept the risk of future sinkhole development at this site.

4.0 Subsurface Exploration Procedures

The procedures used by S&ME, Inc. for field sampling and testing are in general accordance with AASHTO and/or ASTM procedures and established engineering practice in the State of Tennessee. Appendix II contains brief descriptions of the procedures used in this exploration.

S&ME, Inc. drilled 12 soil test borings for the project, 8 of which pertain to the bridge (B-01-B-08) and are discussed herein. The boring locations were requested based on assumed stations and offsets, as the alignment drawings for the new bridge were not yet available at the time of our exploration. Therefore, the boring locations were marked by a member of our staff using approximate means, measuring distances, and estimating right angles relative to onsite landmarks. Due to the approximate methods used to lay out the borings, the borings may not be located within the exact alignment of the structure. However, these borings are still close enough to provide relevant subsurface information.

A Diedrich-D50 drill rig with an automatic hammer was used to drill the borings. The borings were generally advanced from the ground surface with hollow-stem augering techniques coupled with Standard Penetration Testing (SPT) and split-spoon sampling.

After augering and prior to coring, we measured the groundwater level, if present. The borings were backfilled with grout.

The approximate boring locations are depicted on the Foundation Data Sheets in Appendix I. Our interpretation of the boring data obtained during our subsurface exploration is presented in the Test Boring Records and on Profile View on the Foundation Data Sheets. A summary of the boring locations is presented in Table 4-1.

Bridge Foundation Report TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

Boring Number	I-275 Station Number	Offset (feet)	Boring Ground Surface Elevation (feet)	Boring Depth (feet)
B-01	55+39	75 RT	902	50.1
B-02	55+04	75 RT	902	37.8
B-03	55+41	20 RT	902	32.8
B-04	55+05	12 RT	902	33.3
B-05	55+40	22 LT	903	39.8
B-06	55+06	22 LT	903	39.6
B-07	55+39	75 LT	904	49.5
B-08	55+04	76 LT	904	39.7

Table 4-1 Locations of Bridge Borings

5.0 Subsurface Conditions

5.1 Test Boring Summary

The subsurface conditions encountered in the test borings are briefly summarized in Table 5-1. For a full description of the subsurface conditions along with the results of our moisture content and index property laboratory testing, please refer to the Test Boring Records in Appendix II.

Boring Number Station, Offset	Ground Surface Elevation, Boring Depth	Origin	General Description	SPT N - Value or REC/RQD Range	Surface Material	
B-01	EL. 902 ft	FILL: 1.2 ft to 3 ft	СН	8	Asphalt, 4 in	
I-275 Sta. 55+39,	50.1 ft	RESIDUUM: 3 ft to 21.4 ft	SC, WR	100+	Aggregate Base,	
75 RT		ROCK: 21.4 ft to 50.1 ft	Calcareous Shale	94 - 100/68 - 96	10 in	
	EL. 902 ft 37.8 ft	FILL: 1.5 ft to 3 ft	СН	12	Asphalt,	
B-02 I-275 Sta. 55+04,		RESIDUUM: 3 ft to 7.6 ft	WR	100+	7 in Aggregate Base,	
75 RT		ROCK: 7.6 ft to 37.8 ft	Calcareous Shale	92 -100, 40 - 95	11 in	
B-03 I-275 Sta. 55+41, 20 RT	EL. 902 ft 32.8 ft	FILL: 0.9 ft to 1.5 ft	СН	14	Concrete,	
		RESIDUUM: 1.5 ft to 13.7 ft	ML, WR	30 - 100+	11 in	

Table 5-1Test Boring Summary

TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

TDOT PIN No. 124437.00

Boring Number Station, Offset	Ground Surface Elevation, Boring Depth	Origin	General Description	SPT N - Value or REC/RQD Range	Surface Material
		ROCK: 13.7 ft to 32.8 ft	Calcareous Shale	82 - 100, 64 - 100	
		FILL: 0.9 ft to 5.5 ft	СН	4 – 8	
B-04 I-275 Sta. 55+05, 12 RT	EL. 902 ft 33.3 ft	RESIDUUM: 5.5 ft to 15.4 ft	ML, WR	26 - 100+	Concrete, 11 in
		ROCK: 15.4 ft to 33.3 ft	Calcareous Shale	100, 70 - 100	
		FILL: 0.9 ft to 4 ft	СН	5	
B-05 I-275 Sta. 55+40 22 LT	EL. 903 ft 39.8 ft	RESIDUUM: 4 ft to 14.4 ft	ML, WR	61 - 100+	Concrete, 11 in
		ROCK: 14.4 ft to 39.8 ft	Calcareous Shale	75 – 100, 0 – 96	
	EL. 903 ft 39.6 ft	FILL: 0.9 ft to 4 ft	СН	13	
B-06 I-275 Sta. 55+06 22 LT		RESIDUUM: 4 ft to 17.6 ft	WR	22 – 100+	Concrete, 11 in
		ROCK: 17.6 feet to 39.6 ft	Calcareous Shale	90 - 100, 40 - 100	
		FILL: 1 ft to 3 ft	СН	9	Concrete,
B-07 I-275 Sta. 55+39 75 LT	EL. 904 ft 49.5 ft	RESIDUUM: 3 ft to 24.4 ft	WR	100+	10 in Aggregate Base,
751		ROCK: 24.4 ft to 49.5 ft	Calcareous Shale	88 – 100, 60 – 100	2 in
		FILL: 1.3 ft to 3 ft	СН	7	Concrete,
B-08 I-275 Sta. 55+04 76 LT	EL. 904 ft 39.7 ft	RESIDUUM: 3 ft to 12.3 ft	CH, WR	51 - 100+	10 in Aggregate Base,
70 LI		ROCK 12.3 ft to 39.7 ft	Calcareous Shale	90 - 100, 62 - 90	6 in

TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250 TDOT PIN No. 124437.00

Boring No. Station No. Offset	Depth / Elev.(ft) <u>Top of Rock</u> Core Termination	Core Run Intervals (feet)	RQD (%)	REC. (%)	Rock Description
I-275 B-01 Sta. 55+39 75 RT	21.4 / 880.6 50.1 / 851.9	RUN 1: 21.4 to 25.1 RUN 2: 25.1 to 30.1 RUN 3: 30.1 to 35.1 RUN 4: 35.1 to 40.1 RUN 5 : 40.1 to 35.1 RUN 6 : 45.1 to 50.1	84 76 84 96 68 96	95 94 98 100 94 96	 21.4'-21.9': CALCAREOUS SHALE, gray, bedded, continuous, good quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 21.9'-22.1': SOIL SEAM 22.10'-26.1': CALCAREOUS SHALE, gray, bedded, continuous, good quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 26.1'-26.2': SOIL SEAM 26.2'-27.2': CALCAREOUS SHALE, gray, bedded, continuous, good quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 26.2'-27.2': CALCAREOUS SHALE, gray, bedded, continuous, good quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 27.2'-27.4': SOIL SEAM 27.4'-30.7': CALCAREOUS SHALE, gray, bedded, continuous, good quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 30.7'-30.8': SOIL SEAM 30.8'-50.1': CALCAREOUS SHALE, gray, bedded, continuous, fair quality to excellent quality, 80° to 85° bedding angle, moderately weathered to fresh, medium
I-275 B-02 Sta. 55+04 75 RT	7.6 / 894.4 37.8 / 864.2	RUN 1: 7.6 to 9.8 RUN 2: 9.8 to 14.8 RUN 3: 14.8 to 19.8 RUN 4: 19.8 to 24.8 RUN 5: 24.8 to 29.8 RUN 6: 29.8 to 34.8 RUN 7 34.8 to 37.8	95 82 40 40 84 90 67	95 92 98 100 98 94 100	 7.6'-12.5':CALCAREOUS SHALE, gray with tan, bedded, continuous, excellent quality to good quality 80° to 85° bedding angle, slightly weathered to fresh, medium 12.5'-12.9': SOIL SEAM 12.9'-14.8': CALCAREOUS SHALE, gray with tan, bedded, continuous, good quality, 80° to 85° bedding angle, slightly weathered to fresh, medium 14.8'-14.9': SOIL SEAM 14.9'-29.8': CALCAREOUS SHALE, gray with tan, bedded, continuous, poor quality to good quality, 80° to 85° bedding, slightly weathered to fresh, medium 29.8'-37.8': CALCAREOUS SHALE, gray with tan, bedded, continuous, poor quality to fair 70° to 85° bedding, slightly weathered to fresh, medium
I-275 B-03 Sta. 55+41 20 LT	13.7 / 888.3 32.8 / 869.2	RUN 1: 13.7 to 14.8 RUN 2: 14.8 to 19.8 RUN 3: 19.8 to 24.8 RUN 4: 24.8 to 29.8 RUN 5: 29.8 to 32.8	64 72 96 92 100	82 100 100 100 100	 13.7'-16.2': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous to continuous, fair quality to excellent quality, 75° to 80° bedding angle, moderately weathered to fresh, medium 16.2'-28.8': CALCAREOUS SHALE, gray, bedded, continuous, excellent quality,

Table 5-2 – Rock Core Summary

TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

TDOT PIN No. 124437.00

Boring No. Station No. Offset	Depth / Elev.(ft) <u>Top of Rock</u> Core Termination	Core Run Intervals (feet)	RQD (%)	REC. (%)	Rock Description
					75° to 80° bedding angle, slightly weathered to fresh, medium 28.8'-29.8': CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 29.8'-32.8': CALCAREOUS SHALE, gray, bedded, continuous, excellent quality, 75° to 80° bedding angle, slightly weathered to fresh, medium
		RUN 1: 15.4 to 20	70	100	15.4'-17' : CALCAREOUS SHALE, gray with tan, bedded, incompetent, poor quality, 70° to 80° bedding angle,
I-275 B-04	15 4 / 996 6		98	100	moderately weathered to fresh,
Sta. 55+05	15.4 / 886.6 33.3 / 868.7	RUN 2: 20 to 25			medium17-33.3': CALCAREOUS SHALE,
12 RT		RUN 3: 25 to 30	100	100	gray with tan, bedded, continuous, excellent quality, 75° to 80° bedding
		RUN 4: 30 to 33.3	100	100	angle, slightly weathered to fresh, medium
I-275 B-05 Sta. 55+40 22 LT	14.4 / 888.6 39.8 / 863.2	RUN 1: 14.4 to 14.8 RUN 2: 14.8 to 19.8 RUN 3: 19.8 to 24.8 RUN 4: 24.8 to 29.8 RUN 5: 29.8 to 34.8 RUN 6: 34.8 to 39.8	0 70 56 90 84 96	75 96 90 100 100	 14.4'-16.3': CALCAREOUS SHALE, gray with tan, bedded, incompetent to continuous, very poor quality to fair quality, 75° to 80° bedding angle, moderately weathered to fresh, medium 16.3'-16.9': SOIL SEAM 16.9'-17.7': CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 17.7'-18.1': SOIL SEAM 18.1'-21.9': CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 17.7'-18.1': SOIL SEAM 18.1'-21.9': CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 21.9'-22.8': SOIL SEAM 22.8'-39.8': CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality to excellent quality, 75° to 80° bedding angle, slightly weathered, medium
I-275 B-06 Sta. 55+06 22 LT	17.6 / 885.4 39.6 / 863.4	RUN 1: 17.6 to 19.6 RUN 2: 19.6 to 24.6 RUN 3: 24.6 to 29.6 RUN 4: 29.6 to 34.6 RUN 5: 34.6 to 39.6	40 100 100 100 100	90 100 100 100 100	 17.6'-23.5: CALCAREOUS SHALE, gray, bedded, continuous, poor quality to excellent, 75° to 80° bedding angle, moderately weathered to fresh, medium 23.5'-23.6': SOIL SEAM 23.6'-39.6: CALCAREOUS SHALE, gray with tan, bedded, continuous, excellent quality, 75° to 80° bedding angle, fresh, medium
I-275 B-07 Sta. 55+39 75 LT	24.4 / 879.6 49.5 / 854.5	RUN 1: 24.4 to 29.5 RUN 2: 29.5 to 34.5	67 60	90 88	24.4'-25.1' : CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium

TDOT P.E. No. 471275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

TDOT PIN No. 124437.00

Boring No. Station No. Offset	Depth / Elev.(ft) <u>Top of Rock</u> Core Termination	Core Run Intervals (feet)	RQD (%)	REC. (%)	Rock Description
		RUN 3: 34.5 to 39.5	68	96	25.1'-25.3' : SOIL SEAM
		RUN 4: 39.5 to 44.5	96	100	25.3'-25.7': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair
		RUN 5: 44.5 to 49.5	100	100	 quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 25.7'-25.8': SOIL SEAM 25.8'-26.6': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 26.6'-26.7': Soil Seam 26.7'-27': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 26.7'-27': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 27'-27.1': SOIL SEAM 27.1'-32.1: CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 32.1'-32.4': SOIL SEAM 32.4'-33.2': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 33.2'-33.5': SOIL SEAM 33.5'-35.5': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous, fair quality, 75° to 80° bedding angle, slightly weathered to fresh, medium 35.5'-35.7': SOIL SEAM 35.7'-35.7': SOIL SEAM 35.7'-35.7': SOIL SEAM 35.7'-35.7': SOIL SEAM 35.7'-35.7': CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality to excellent quality, 80° to 85° bedding angle, slightly weathered to fresh, medium
		RUN 1: 12.3 to 14.7	63	100	12.3'-34.7': CALCAREOUS SHALE, gray with tan, bedded, fairly continuous to
		RUN 2: 14.7 to 19.7	62	98	continuous, fair quality to good quality,
I-275 B-08	12.4 / 891 7	RUN 3: 19.7 to 24.7	76	92	75° to 85° bedding angle, slightly weathered to fresh, medium
Sta. 55+04	12.4 / 891.7 39.7 / 864.3	RUN 4: 24.7 to 29.7	84	98	34.7'-39.7': CALCAREOUS SHALE, gray
76 LT		RUN 5: 29.7 to 34.7	88	100	with tan, bedded, continuous, excellent quality, 75° to 80° bedding angle,
		RUN 6: 34.7 to 39.7	90	90	slightly weathered to fresh, medium (could not retrieve last 0.5 feet of run)

5.2 Groundwater

Groundwater was not encountered in the test borings at the time of prior to coring. It should be noted that groundwater levels can fluctuate with seasonal, climatic, and environmental changes. Therefore, groundwater may be encountered at different depths at some future time.

Bridge Foundation Report TDOT P.E. No. 47I275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

6.0 Laboratory Testing

Laboratory tests were performed on representative samples obtained during the field exploration phase of this project. We conducted moisture content, Atterberg limits, and grain size analysis on selected samples to aid our soil classification and to aid in determining soil strength parameters. The resulting soil descriptions are shown on the Test Boring Records in Appendix II. The laboratory test results, and a brief description of the laboratory test procedures are presented in Appendix III.

7.0 Bridge Foundation Recommendations and Considerations

7.1 Foundations

The existing foundations for Bents 1, 2 and 3 are planned to be used to support the new bridge superstructure dead, live, and wind loads with the longitudinal loads (braking and temperature) assumed to be resisted by the retaining walls through the integral end bents. The existing foundations are a combination of shallow footings bearing on bedrock and driven piles bearing on bedrock. Based on our review of the subsurface information, the provided bridge plans (existing and proposed), and project discussions, the planned loads on the existing foundations are less than or essentially the same as the original foundation design loads. Given the foundations loads are essentially the same or less, we believe reuse of the existing bridge foundations is appropriate assuming the existing foundations are assessed as structurally sound and meet current TDOT standard design criteria.

New foundations for the project will be constructed adjacent to the existing foundations and are assumed to only carry the precast cap and retaining wall or pier wall loads for the new bridge. As stated above, longitudinal loads (braking and temperature) are assumed to be resisted by the retaining walls through the integral end bents. Based on our review of the subsurface information collected for the bridge, and the provided bridge plans and loads, we recommend shallow foundation support for the new bridge abutment retaining walls and pier wall on the underlying hard residual silts and clays and very dense weathered rock (weathered shale); soils and weathered rock with SPT N-values of 30 bpf and greater.

Shallow foundations bearing on residual soils and weathered rock with SPT N-values of 30 bpf and greater may be designed using a nominal (ultimate) bearing resistance of 11.5 kips per square foot (ksf). Using the geotechnical strength bearing resistance factor of 0.45 (AASHTO LRFD Bridge Design Specifications, 9th Ed., 2020 (AASHTO LRFD 2020)), gives a factored geotechnical strength bearing resistance of 5 ksf. To resist lateral forces, we recommend a nominal (ultimate) friction coefficient between the hard clays, silts and weathered rock bearing surface and foundation concrete of 0.50. We recommend using a sliding resistance factor for the geotechnical strength limit state of 0.85 (similar to the factor used for cast-in-place concrete on clay). Since the foundations will be supported on hard residual soils and very dense weathered rock with SPT N-values of 30 bpf and greater, settlement should not be a significant concern. We expect excavation depths for shallow foundations in the general vicinity of our borings will be near the respective top of the hard soils and very dense weathered rock residuum elevations encountered in the borings as shown in Table 7-1.

Boring	Approximate Ground Surface Elevation (feet)	Depth to Very Dense Weathered Rock Residuum (feet)	Elevation of Top of Very Dense Weathered Rock Residuum (feet)
B-01	902	3	899
B-02	902	3	899
B-03	902	3.5	898.5
B-04	902	8	894
B-05	903	4	899
B-06	903	4	899
B-07	904	3	901
B-08	904	4.5	899.5

Table 7-1 Depths and Elevations to 30+ bpf Residual Soils and Weathered Rock

Foundation subgrade observations should be performed by the geotechnical engineer, or their designate, in order to confirm the recommendations provided in this report are consistent with the site conditions encountered. Exposure to weather often reduces foundation support capabilities, thus necessitating remedial measures (undercutting and replacement of softened subgrades) prior to concrete placement. A thin (e.g. 2- to 3-inch thick) mud-mat of lean concrete may be used to protect the exposed foundation subgrades if the opened excavations cannot be backfilled with concrete the same day they are opened. The foundation excavation depth should account for the added mud mat thickness. Foundation bearing areas should be level or suitably benched, and free of loose soil, water, and debris.

7.2 Seismic Considerations

Based on the drilling data, we recommend Seismic Site Class C for the proposed bridge (reference Table 3.10.3.1-1 – Site Class Definitions, AASHTO 2020). From Article 3.10 AASHTO 2020 and the USGS website we obtained the following peak ground acceleration (PGA), short- and long-period spectral accelerations (S_s and S₁, respectively) and five-percent-damped-design response spectrum accelerations (A_s, S_{Ds}, and S_{D1}, respectively) for the site:

- PGA = 0.157 g
- $S_s = 0.281 \text{ g}$
- S₁ = 0.07 g
- A_s = 0.188 g
- $S_{DS} = 0.338 \text{ g}$
- S_{D1} = 0.118 g

With an SD1 value of 0.118, the bridge is assigned to Seismic Zone 1 (AASHTO 2020, Article 3.10.6). Given the bridge is assigned to Seismic Zone 1, a liquefaction assessment is typically not required because the sustained ground acceleration is usually not large enough or does not act over a long enough period of time for liquefaction

Bridge Foundation Report TDOT P.E. No. 47I275-F2-002 Federal Project No.BR-I-275-3(136) S&ME Project No. 22430250

TDOT PIN No. 124437.00

to occur (AASHTO 2020, Article C10.5.4.2). Further, the overburden consists of clay soils and weathered rock which are considered not susceptible to liquefaction.

7.3 Excavation

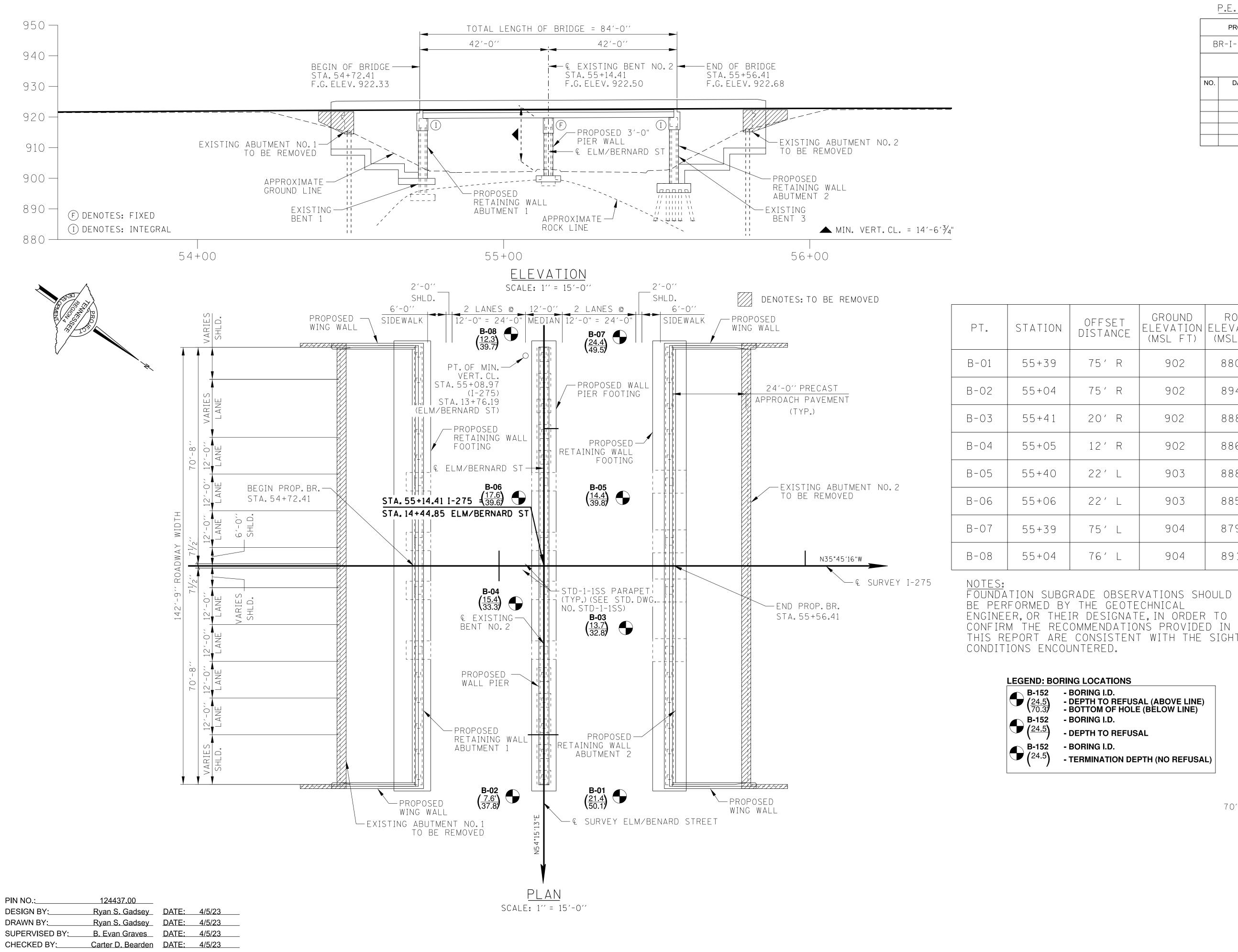
The borings refused at depths ranging from approximately 8 to 24 feet below the existing ground surface. However, hard residual soils and very dense weathered rock with SPT N-values of greater than 50 bpf were encountered within depths of 3 to 8 feet. These hard soils and very dense weathered rock will be more difficult to excavate and may require ripping with a large trackhoe or the use of pneumatic and/or hydraulic hammers to facilitate excavation.

7.4 Ground Water Considerations

We expect groundwater levels will be within the bedrock mass. However, water/groundwater conditions can vary seasonally and be affected by recent rainfall conditions, construction activity and/or other site-specific factors such as water levels adjacent creeks and ponds. During periods of heavy rain, perched groundwater conditions may occur at this site. If perched groundwater is encountered, the contractor should provide adequate dewatering to maintain the groundwater level below the bottom of excavations. Water seeping into shallow excavations can typically be controlled by pumping from sumps. Water from the pumps should be discharged beyond the construction boundaries to limit its effect on construction activities.

8.0 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions and recommendations contained in this report are based on applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made. S&ME is not responsible for the conclusions, opinions, or recommendations of others based on this data.

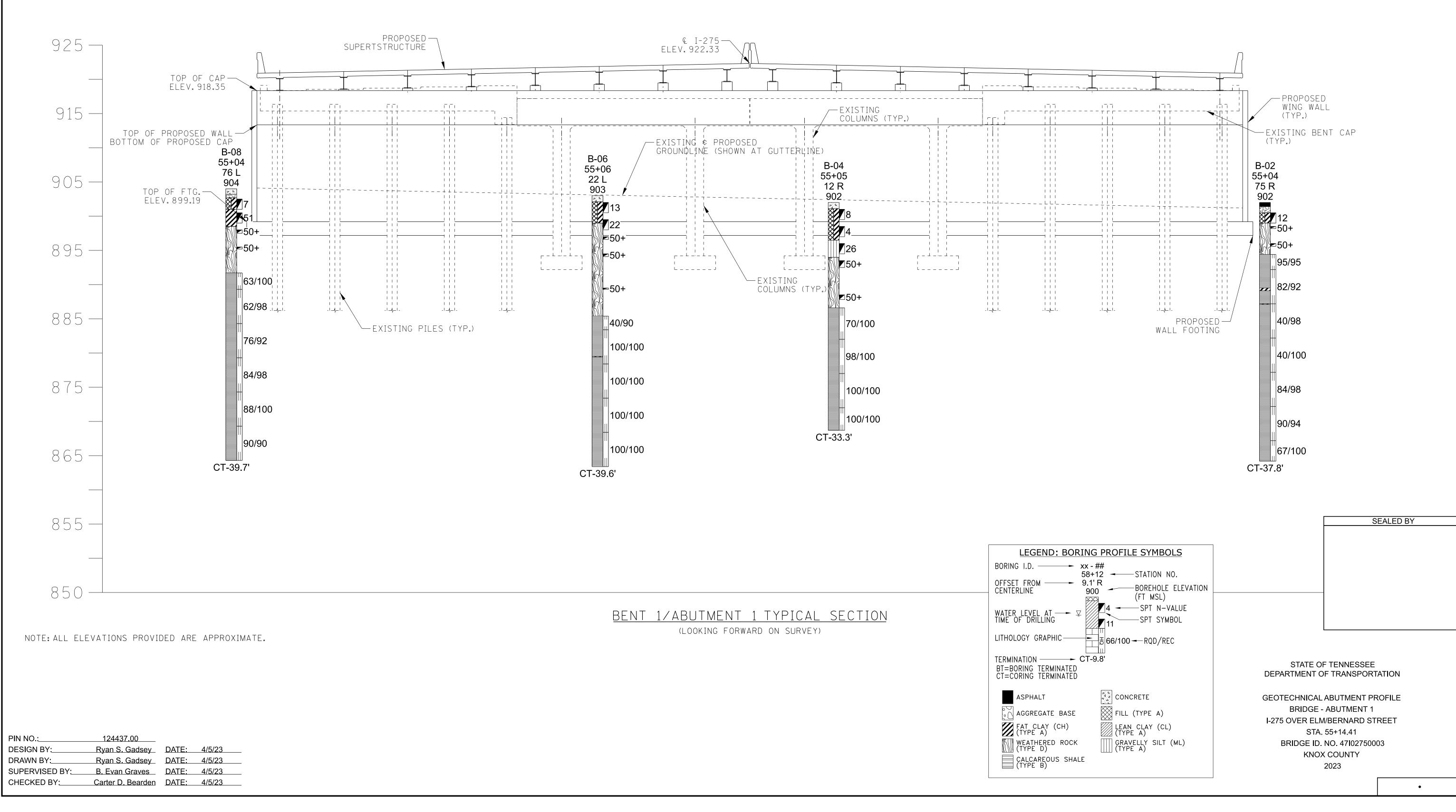

Our conclusions and recommendations are based on the design information furnished to us, the data obtained during the geotechnical exploration, the laboratory test results, and our experience. They do not reflect variations in the subsurface conditions that are likely to exist between our borings and in unexplored areas of the site due to the inherent variability of the subsurface conditions in this geologic region and past land use. If such variations are found during construction, re-evaluating our conclusions and recommendations will be necessary.

If changes are made in the location of the planned bridge or elevations of the tops of the planned foundations, the recommendations contained in this report will not be considered valid unless our firm has reviewed the changes and modified or verified our recommendations in writing. You should retain us and give us the opportunity to review the final plans and the applicable portions of the project specifications when the designers complete the design. This review will allow us to check whether these documents are consistent with the intent of our recommendations. For more information on the use and limitations of this report, please read the ASFE document included in Appendix V.

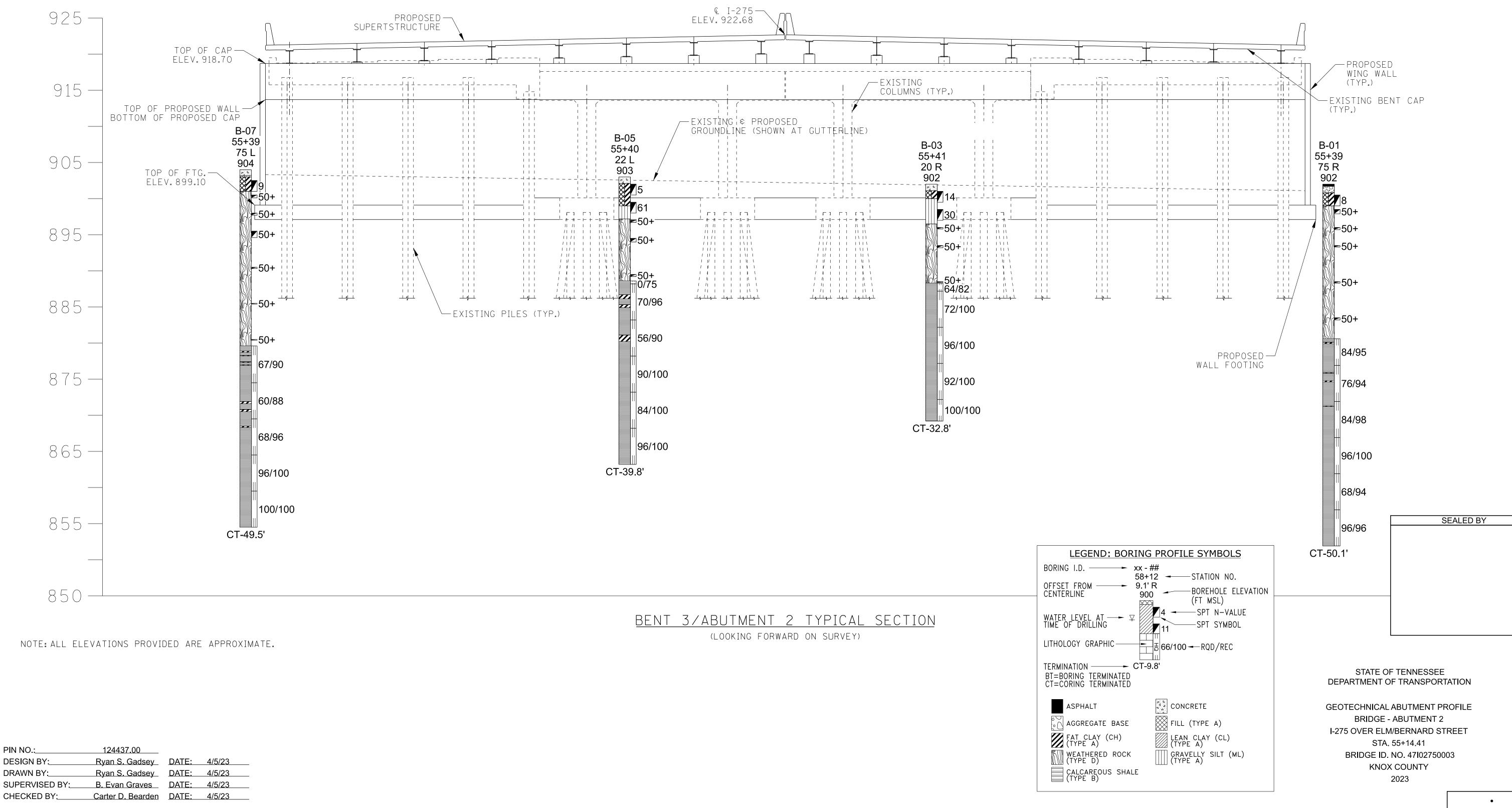
Appendices

Appendix I

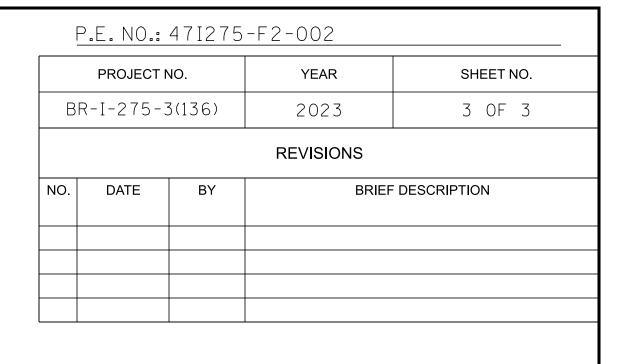
Foundation Data Sheets



P.E. NO.: 47I275-F2-002					
	PROJECT N	10.	YEAR	SHEET NO.	
BR-I-275-3(136)			2023	1 OF 3	
	REVISIONS				
NO.	DATE	BY	BRIEF DESCRIPTION		


FFSET STANCE	GROUND Elevation (MSL FT)	ROCK Elevation (MSL FT)
75′R	902	880.6
75′ R	902	894.4
20′R	902	888.3
12′ R	902	886.6
22′L	903	888.6
22′L	903	885.4
75′L	904	879.6
76′L	904	891.7

ENGINEER, OR THEIR DESIGNATE, IN ORDER TO CONFIRM THE RECOMMENDATIONS PROVIDED IN THIS REPORT ARE CONSISTENT WITH THE SIGHT


OCATIONS	SEALED BY
IG I.D. H TO REFUSAL (ABOVE LINE) OM OF HOLE (BELOW LINE) IG I.D.	
H TO REFUSAL	
NG I.D.	
INATION DEPTH (NO REFUSAL)	
	2025 ADT = 74920 70'-8" ROADWAY (NB\$SB) WITH STD-1-1SS PARAPET DESIGN SPEED = 55 MPH STATE OF TENNESSEE
	DEPARTMENT OF TRANSPORTATION
	GEOTECHNICAL FOUNDATION DATA BRIDGE I-275 OVER ELM/BERNARD STREET
	STA. 55+14.41
	BRIDGE ID. NO. 47102750003
	KNOX COUNTY
	2023
	•

ŀ	P.E. NO.: 47I275-F2-002													
	PROJECT N	10.	YEAR	SHEET NO.										
В	R-I-275-3	3(136)	2023	2 OF 3										
REVISIONS														
NO.	DATE	BY	BRIEF	DESCRIPTION										

DESIGN BY:	<u> </u>	DAIE:	4/5/23	
DRAWN BY:	Ryan S. Gadsey	DATE:	4/5/23	
SUPERVISED BY:	, ,			
CHECKED BY				

Appendix II

Field Exploration Procedures

Test Boring/Pit Record Legend

Test Boring Records

Rock Core Photos

HOLLOW STEM AUGERING PROCEDURES WITH STANDARD PENETRATION RESISTANCE TESTING AASHTO T 206

The borings were advanced using auger drilling techniques. At regular intervals, soil samples were obtained with a standard 1.4-inch I.D., 2.0-inch O.D., split-tube sampler. The sampler was initially seated 6 inches to penetrate any loose cuttings and then driven an additional foot with blows of a 140-pound hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is the standard penetration resistance. Standard penetration resistance, when properly evaluated, is an index to the soil's strength and density. The criteria used during this exploration are presented on the Test Boring Record Legend.

Representative portions of the soil samples, thus obtained, were placed in sealed containers and transported to the laboratory. The engineer selected samples for laboratory testing. The Test Boring Records in this Appendix provide the soil descriptions and penetration resistances.

Soil drilling and sampling equipment may not be capable of penetrating hard cemented soils, thin rock seams, large boulders, waste materials, weathered rock, or sound continuous rock. Refusal is the term applied to materials that cannot be penetrated with soil drilling equipment or where the standard penetration resistance exceeds 100 blows per foot. Core drilling is needed to determine the character and continuity of the refusal materials.

ROCK CORING PROCEDURES AASHTO T 225

Refusal materials were explored using a diamond-studded bit fastened to a double tube core barrel. An NQ2-size bit was used during this exploration, which obtains core samples approximately 2 inches in diameter. The materials recovered were placed in a sample box. Our engineer classified the type and hardness of the rock, core recovery, and Rock Quality Designation (RQD). Core recovery is the sample length recovered divided by the length drilled, and RQD is the sample length recovered in pieces 4 inches or longer divided by the length drilled. Both core recovery and RQD are expressed as percentages. Rock hardness, where applicable, was judged based on the following criteria:

Rock Hardness	Criteria
Very Soft	Rock disintegrates or easily compresses when touched; can be hard to very hard soil
Soft	Rock is coherent but breaks very easily with thumb pressure at sharp edges and crumbles with firm hand pressure.
Medium Hard	Small pieces can be broken off along sharp edges by hard considerable thumb pressure; can be broken with light hammer blows.
Hard	Rock cannot be broken by thumb pressure, but can be broken by moderate hammer blows.
Very Hard	Rock can only be broken by heavy hammer blows.

TEST BORING/PIT RECORD LEGEND

	FINE	AND COARS	E GRAINED	SOIL INFO	RMATION				
	AINED SOILS GRAVELS)		GRAINED SO		PART	ICLE SIZE			
<u>N</u>	Relative Density	N	<u>Consistency</u>	Qu, KSF Estimated	Boulders	Greater than 300 mm (12 in)			
0-4	Very Loose	0-1	Very Soft	0-0.5	Cobbles	75 mm to 300 mm (3 to 12 in)			
5-10	Loose	2-4	Soft	0.5-1	Gravel	4.74 mm to 75 mm (3/16 to 3 in)			
11-20	Firm	5-8	Firm	1-2	Coarse Sand	2 mm to 4.75 mm			
21-30	Very Firm	9-15	Stiff	2-4	Medium Sand	0.425 mm to 2 mm			
31-50	Dense	16-30	Very Stiff	4-8	Fine Sand	0.075 mm to 0.425 mm			
Over 50	Very Dense	Over 31	Hard	8+	Silts & Clays	Less than 0.075 mm			
and testing and to c driven three 6-inch actuated by a rope	btain relative density increments with a 140	and consistenc lb. hammer fa w counts requi tables.	y information Illing 30 inchor red to drive t	. A standard es. The ham he sampler th	1.4-inch I.D./2- mer can either	rbed soil sample for examination inch O.D. split-barrel sampler i be of a trip, free-fall design, c rements are added together and			
		RO		RTIES					
	LITY DESIGNATION (RQD)			ROCK HARD				
Percent RQD	Quality		Very Hard:		broken by heavy l				
0-25	Very Poor		Hard:	Rock cannot moderate har		nb pressure, but can be broken by			
25-50	Poor		Moderately			along sharp edges by considerable			
50-75	Fair		Hard:		essure; can be broken with light hammer blows. ent but breaks very easily with thumb pressure at				
75-90						h firm hand pressure.			
90-100	Excellent		Very Soft:	Rock disinteg hard to very h		mpresses when touched; can be			
RQD = <u>Sum of</u>	4 in. and longer Rock Pie Length of Core Ru		X100	43 RQD		<u>e Diameter</u> <u>Inches</u> BQ 1-7/16			
Recovery =	Length of Rock Core Rec Length of Core Ru	overed	X100	NQ 63 REC		NQ 1-7/8 HQ 2-1/2			
	Longar of Coro ra		SYMBOL						
		ERIAL TYPES			50				
						andard Penetration, BPF			
13741	High Plasticity	[型] Data	[777	1		visture Content, %			
, Topsoil	Inorganic Silt or Clay	또 와 안 와		Schist		juid Limit, %			
	Organic					asticity Index, %			
Asphalt	Silts/Clays			Amphibolite		cket Penetrometer Value, TSF			
Crushed Limestone	Well-Graded Gravel	Sandst	one	Metagraywack	Un	confined Compressive Strength timated Qu, TSF			
×	Poorly-Graded	× × × × Siltston	e /	Phylite	γ _{D:} Dr	y Unit Weight, PCF			
Shot-rock	Gravel	<u> </u>	Ĺ	,		nes Content			
Shot-rock Fill	Silty Gravel	Shale				SAMPLING SYMBOLS			
	Clayey Gravel	Claysto	ne			idisturbed No Sample Recovery			
Low Plasticity Inorganic Silt		N. (18							
	Well-Graded Sand	Weathe Rock	ered			lit-Spoon			
Inorganic Silt High Plasticity	1					mple Water Level After Drilling			
Inorganic Silt High Plasticity Inorganic Silt Low Plasticity	Sand Poorly-Graded	Rock	ie			mple / Water Level			

BORING NO.: B-01 I-275 STATION NO.: 55+39 OFFSET: 75 R

PR	OJECT:	I-275	Bridg	e over Elm Street					JOB NO: 22430250 SHEET 1 OF 2				1 OF 2			
PR	OJECTI	LOCAT	ION:	Knox County, Teni	nessee											
ELE	EVATIO	N: 902	feet ±	£	BORING	STARTED:	ED: 12/21/2022 RIG TYPE:				RIG TYPE:Diedrich D-5	Diedrich D-50 BORING DIA. (IN)			DIA. (IN): 3-1	
DR	ILLING I	METHO	D: Ro	ock Core	BORING	COMPLETED	: 12/21/2022 HAMMER: Automatic CORE DIA.: N					A.: NQ=1-7/8				
	OUNDW ATD	/ATER:				Remarks:										
G		DEPTH (FT.)		MATERIA	AL DESCRIPT	ION		L	SF	м	PI	STANDARD PENET RESISTANCE 0 10 20 30 40	(N)			BLOWS/6"
	902.0_ 901.7- 900.8- 899.0- 896.5- 896.5- 896.0- 896.0-	0 - 5 - 10 	0.3' - 1.2' - - 5.5' - - - - - - - - - - - - - -	Asphalt, 4 inche Aggregate base FAT CLAY, (CH trace sand, firm gray, mottled, n CLAYEY SANE very dense, tan WEATHERED shale fragments dense, tan brow WEATHERED shale fragments gray with tan br WEATHERED shale fragments dense, tan brow	a, 10 inches I), few rock f , orange bro- noist WITH GRA- brown, dry ROCK, sam s, little clayer (n, dry ROCK, sam s, very dense ROCK, sam s, few silt, very bown, dry ROCK, sam s, few clayey (n, dry	wn with tan VEL (SC), pled as y silt, very pled as e, tan pled as ery dense,	Fill Residuum			4.2	14				***	3 - 3 - 5 (8) (REC:0.8) 46 - 50/1" (50+) (REC:0.6) 50/4" (50+) (REC:0.2) 50/2" (50+) (REC:0.2) 50/2" (50+) (REC:0.2) 50/4" (50+) (REC:0.3)
	880.6- 880.1= 879.9 875.9=	 - 25	21.4'- -21.9'= 22.1' - 	coring CALCAREOUS continuous, goo bedding angle, fresh, medium Soil seam	SHALE, gra od quality, 75 slightly weat	ay, bedded, 5° to 80° hered to	Bedrock			RUI RQ RE(N - 3 D - 8 C - 9		5.1'		25.1	」 ' / 876.9' msl
	875.8 874.8 <u>-</u> 874.6 871.3 <u>-</u> 871.2		26.2' 27.2' 27.4' 30.7' 30.8'	CALCAREOUS continuous, goo bedding angle, fresh, medium Soil seam CALCAREOUS continuous, goo	od quality, 75 slightly weat SHALE, gra	5° to 80° hered to				RUI RQ		5.0' - Depth from 25.1' to 30 76%).1'		30.1	' / 871.9' msl

BORING NO.: B-01 I-275 STATION NO.: 55+39 OFFSET: 75 R

PR	OJECT:	I-275 Brid	lge over Elm Street			JOB NO): 22430250	SHEET 2 OF 2
PR	OJECT	LOCATION	: Knox County, Tennes	ssee				
EL	EVATIO	N: 902 feet	t ±	BORING STARTED	: 12/21/2022)	RIG TYPE:Diedrich D-50) BORING DIA. (IN): 3-1/4"
DR	RILLING	Method: F	Rock Core	BORING COMPLET	ED: 12/21/2022		HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in
	ROUNDV 7 ATD	VATER:		Remarks	::			
G		DEPTH (FT.)	MATERIAL I	DESCRIPTION	L S	r m pi		
	851.9-		continuous, good o bedding angle, slig fresh, medium Soil seam	HALE, gray, bedde quality, 75° to 80° ghtly weathered to HALE, gray, bedde lality to excellent bedding angle, ered to fresh, d)		RQD - 8 REC - 9 RUN 4 RUN - 5 RQD - 9 REC - 1 RUN - 5 RQD - 6 REC - 9 REC - 9	5.0' - Depth from 30.1' to 35. 34% 38%(<i>Continued</i>) (NQ) 5.0' - Depth from 35.1' to 40. 96% 00% (NQ) 5.0' - Depth from 40.1' to 45. 8% 94% (NQ) 5.0' - Depth from 45.1' to 50. 96%	35.1' / 866.9' msl .1' 40.1' / 861.9' msl .1' 45.1' / 856.9' msl

BORING NO.: B-02 I-275 STATION NO.: 55+04 OFFSET: 75 R

	OJECT: I-275 Bridge over Elm Street OJECT LOCATION: Knox County, Tennessee							JOB NO: 22430250 SHEET 1 OF					SHEET 1 OF 2		
		N: 902		•	1	STARTED:	12	2/22/20	22			RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1		
				∸ ock Core								HAMMER: Automatic			
	UNDV	VATER:				Remarks:									
3		DEPTH (FT.)		MATERIAL	DESCRIP	I TION		L	S R	м	PI	STANDARD PENETR RESISTANCE (N 0 10 20 30 40 5			
	902.0_ 901.4- 900.5- 899.0- 899.0- 889.1- 889.1- 887.2= 887.1 887.2= 887.1		- 0.6' - 1.5' - 3' - 12.5' - 12.9' - 14.8' - 14.9' - - - - - - - - - - - - - -	Asphalt, 7 inches Aggregate base, FAT CLAY, (CH), fragments, stiff, p moist WEATHERED RG shale fragments, brown, dry Auger refusal at 7 coring CALCAREOUS S continuous, excel quality, 80° to 85° slightly weathered Soil seam CALCAREOUS S continuous, good bedding angle, sli fresh, medium Soil seam CALCAREOUS S continuous, poor quality, 80° to 85° slightly weathered	little shal urple with DCK, sam very dens 7.6 feet, ba HALE, gr lent qualit bedding I to fresh, HALE, gr quality, 8 ghtly wea HALE, gr quality to bedding	e red brown, ppled as e, tan egan NQ ay with tan, y to good angle, medium ay with tan, 0° to 85° thered to ay with tan, good angle,	Fill Residuum Bedrock			RUI RQC RUI RQC	N - 2 - 9 N - 5 - 9 N - 5 - 8 N - 5 - 8 N - 5 - 4 N - 5 - 4	(NQ) 2.2' - Depth from 7.6' to 9.8' 5% 5% (NQ) 3.0' - Depth from 9.8' to 14.8' 2% (NQ) 6.0' - Depth from 14.8' to 19.8' 19.8' (NQ) 6.0' - Depth from 19.8' to 24.8' 10% 00%	3 - 2 - 10 (12) (REC:0.9) 50/4" (50+) (REC:0.2) 50/5" (50+) (REC:0.3) 9.8' / 892.2' msl 14.8' / 887.2' msl 3' 19.8' / 882.2' msl 3' 24.8' / 877.2' msl		

BORING NO.: B-02 I-275 STATION NO.: 55+04 OFFSET: 75 R

PROJECT: I-275 Bi	ridge over Elm Street			JOB NO	0: 22430250	SHEET 2 OF 2
PROJECT LOCATIC	N: Knox County, Tennes	ssee				·
ELEVATION: 902 fe	et ±	BORING STARTED:	12/22/2022		RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/4"
DRILLING METHOD	: Rock Core	BORING COMPLETED): 12/22/2022		HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in
GROUNDWATER: Dry ATD		Remarks:				
G ELEV DEPTH (FT.) (FT.)	MATERIAL	DESCRIPTION	L S			
	CALCAREOUS S continuous, excell quality, 70° to 85° slightly weathered medium(<i>Continue</i>) <i>Coring terminated</i>	bedding angle, to fresh, <i>d)</i>		RQD - 9 REC - 9 RUN 7	5.0' - Depth from 29.8' to 34. 90% 94% <i>(Continued)</i> (NQ) 3.0' - Depth from 34.8' to 37. 57%	34.8' / 867.2' msl

BORING NO.: B-03 I-275 STATION NO.: 55+41 OFFSET: 20 R

			-	je over Elm Street					JO	R NC): 22430250	SHEET 1 OF 2
PR	DJECT	LOCAT	ON:	Knox County, Tenne	ssee						1	
ELE	VATIO	N: 902	feet	±	BORING STARTED:		2/29/20	_			RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1
DRI	LLING	METHO	D: H	ollow Stem Auger	BORING COMPLETE	IG COMPLETED: 12/29/2022 HAMMER: Automatic CORE DIA.: N					CORE DIA.: NQ=1-7/8	
	OUNDV ATD	VATER:			Remarks:							
3		DEPTH (FT.)		MATERIAL	DESCRIPTION		L	SF	км	PI	STANDARD PENETR RESISTANCE (N 0 10 20 30 40 5	
	902.0_ 901.1- 900.5- 900.0- 896.5- 896.5-		0.9' 1.5' 2' 5.5' 13.7'	(CH), trace sand, moist FAT CLAY, (CH), brown with, slight GRAVELLY SILT stiff, tan brown, d WEATHERED Re shale fragments, brown, dry, Shale	Y WITH GRAVEL, stiff, brown, slightly trace sand, stiff, tan ly moist , (ML), stiff to very ry, Shale fragments DCK, sampled as very dense, tan	Fill Residuum						6 - 2 - 12 (14) (REC:1.3) 36 - 18 - 12 (34) (REC:0.8) 50/2" (50+) (REC:0.2) >> 50/3" (50+) (REC:0.2) 50/1" (50+) (REC:0.1)
	885.8-	15 - 20 	- 16.2'- - - - - - - - - - - - - - - - - - -	CALCAREOUS S bedded, fairly cor continuous, fair q to 80° bedding ar weathered to fres CALCAREOUS S continuous, excel bedding angle, sl fresh, medium	uality to excellent, 75 gle, moderately h, medium HALE, gray, bedded, lent quality, 75° to 80 ghtly weathered to	, c			RU RQ RU RU RU RU RU RU RU RU RU RU RU RU RU	N - 1 D - 6 C - 8 N 2 N - 5 D - 7 C - 1 N 3 N - 5 D - 9 C - 1 N 4 N - 5 D - 9	(NQ) 5.0' - Depth from 14.8' to 19.7 72% (00% (NQ) 5.0' - Depth from 19.8' to 24.3 66% 100% (NQ) 5.0' - Depth from 24.8' to 29.3	B' 14.8' / 887.2' msl B' 19.8' / 882.2' msl B' 24.8' / 877.2' msl
	873.2- 872.2-	 30 	.28.8'- .29.8'-	bedded, continuo	HALE, gray with tan, us, fair quality, 75° to e, slightly weathered	Γ						29.8' / 872.2' msl

BORING NO.: B-03 I-275 STATION NO.: 55+41 OFFSET: 20 R

Γ	PROJECT: I-275 Bridge over Elm Street								JOB NC): 22430250	SHEET 2 OF 2
	PRC	DJECT	LOCATIO	DN: Knox County, Tennes	ssee						
	ELE	VATIO	N: 902 fe	eet ±	BORING	STARTED:	12/29/2	022		RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/4"
	DRII	LLING	METHOD	: Hollow Stem Auger	BORING	COMPLETED:	12/29/2	022		HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in
		DUNDV ATD	VATER:			Remarks:					
	G	ELEV. (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPT	ΓΙΟΝ	L	s			
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/10/23		869.2-		CALCAREOUS S continuous, excell bedding angle, slig fresh, medium(Co Coring terminated	ent quality ghtly weat <i>ntinued)</i>	y, 75° to 80° thered to			RQD - 1	3.0' - Depth from 29.8' to 32.3	8'
ß											Logged by: David Abston

BORING NO.: B-04 I-275 STATION NO.: 55+05 OFFSET: 12 R

				e over Elm Street Knox County, Tenne					JOI	3 NC	0: 22430250	SHEET 1 OF 2		
		N: 902 1		•	BORING STARTE		2/28/2	022			RIG TYPE:Diedrich D-50			
				bllow Stem Auger							HAMMER: Automatic	CORE DIA.: NQ=1-7/8 ii		
			J. TR	Silow Stelli Auger	Remar			022						
	ATD						1			1	STANDARD PENETR			
}		DEPTH (FT.)		MATERIAL	DESCRIPTION		L	SF	R M	PI	RESISTANCE (N			
	902.0_	— 0 —												
	901.1- 899.0-		0.9' 3'	Concrete, 11 inch SANDY FAT CLA (CH), trace sand, moist FAT CLAY, (CH),	Y WITH GRAVEI firm, brown, sligh						•8	7 - 4 - 4 (8) (REC:0.5)		
	896.5-	 - 5 	5.5' -	brown with red brown with red brown GRAVELLY SILT brown, dry, Shale	own, slightly mois						•	2 - 2 - 2 (4) (REC:0.8) 29 - 12 - 14 (2)		
	894.0-	 - 10 	8' -	WEATHERED R(shale fragments, brown, dry, Shale	very dense, tan							(REC:0.6) 28 - 50 (50+) (REC:0.8)		
	886.6-	 15 	15.4'-	Coning	-		, 18311					→>●36 - 50/2" (50+ (REC:0.6)		
	885.0-		17' -	CALCAREOUS S bedded, continuo 80° bedding angle weathered to fres CALCAREOUS S	us, poor quality, 7 e, moderately h, medium	′5°to			RU RQ	N - 4 D - 7	(NQ) I.6' - Depth from 15.4' to 20' 70% 00%			
		— 20 — - – - – - –		continuous, excel bedding angle, sli fresh, medium	lent quality, 75° to	o 80°			RU RQ	N - 5 D - 9	(NQ) 5.0' - Depth from 20' to 25' 88% 00%	20' / 882.0' msl		
		- 25 							RU RQ	N - 5 D - 1	(NQ) 5.0' - Depth from 25' to 30' 100% 00%	—— 25' / 877.0' msl		
		 30 										30' / 872.0' msl		

BORING NO.: B-04 I-275 **STATION NO.: 55+05** OFFSET: 12 R

PR	OJECT	I-275 Brid	ge over Elm Street			JOB NO: 22430250 SHEET 2 OF 2				
PR	OJECT	LOCATION:	Knox County, Tenne	essee						
ELI	EVATIO	N: 902 feet	±	BORING STARTED:	12/28/2022		RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/4"		
DR	ILLING	METHOD: H	lollow Stem Auger	BORING COMPLETE	D: 12/29/2022		HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in		
	OUNDV / ATD	VATER:		Remarks:						
G	ELEV (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPTION	L S					
	868.7-	 - 35	Coring terminated	d at 33.3 feet		RQD - 1	(NQ) 3.3' - Depth from 30' to 33.3' 100% 00%(<i>Continued</i>)	33.3' / 868.7' msl		
		 - 40 								
		 - 45 								
		 - 50 								
		 - 55 								
		 - 60								
			I							

BORING NO.: B-05 I-275 STATION NO.: 55+40 OFFSET: 22 L

PROJECT: I-275 Bridge over Elm Street PROJECT LOCATION: Knox County, Tennessee										4		
PROJECT	LOCATION	: Knox County, Tenne	essee									
ELEVATION: 903 feet ± BORING STARTED:					12/29/2022				RIG TYPE:Diedrich D-50) BORI	BORING DIA. (IN): 3-1/	
DRILLING METHOD: Hollow Stem Auger BORING COMPLETED:					: 12/29/2022				HAMMER: Automatic	CORE	E DIA.: NQ=1-7/8	
GROUND\ Dry ATD	WATER:		Remarks:									
	ELEV.DEPTH (FT.) (FT.) MATERIAL DESCRIPTION				L S R M PI STANDARD PENETRAT RESISTANCE (N) 0 10 20 30 40 50 60					N)	TION BLOWS/6" 60 70 80 90100	
903.0, 902.1 899.0 897.2 888.6 888.6 888.6 886.7 886.1 885.3 884.9 881.1 885.3 884.9	- $ 0.9 4' 5$ $ 4' 5.8' -$	SANDY FAT CLA (CH), trace sand, moist GRAVELLY SILT brown, dry, Shale WEATHERED R shale fragments, brown, dry, Shale CALCAREOUS S bedded, incompe- very poor quality 80° bedding angl weathered, medi- Soil seam CALCAREOUS S bedded, continue 80° bedding angl to fresh, medium Soil seam CALCAREOUS S bedded, continue 80° bedding angl to fresh, medium Soil seam CALCAREOUS S bedded, continue 80° bedding angl to fresh, medium Soil seam CALCAREOUS S bedded, continue	AY WITH GRAVEL, firm, brown, slightly , (ML), hard, tan fragments OCK, sampled as very dense, tan fragments OCK, sampled as very dense, tan fragments A4.4 feet, began NQ SHALE, gray with tan, tent to continuous, to fair quality, 75° to e, moderately um SHALE, gray with tan, ous, fair quality, 75° to e, slightly weathered SHALE, gray with tan, ous, fair quality, 75° to e, slightly weathered SHALE, gray with tan, ous, fair quality, 75° to e, slightly weathered SHALE, gray with tan, ous, fair quality to 75° to 80° bedding	Fill Residuum Bedrock			RUI RQI RUI RUI RUI RUI RUI RUI RUI RUI RUI RU	N - 00 D - 00 C - 7 N 2 N - 5 C - 9 N 3 N - 5 C - 9 N 3 N - 5 C - 9 N 4 N - 5 C - 9 N 4 N - 5 C - 9 N 4 N - 5 C - 9 N 2 N - 5 C - 9 N 2 N - 5 C - 7 N 2 N - 5 C - 9 N - 5 N	 (NQ) 0' - Depth from 14.8' to 19 0% 6% (NQ) 0' - Depth from 19.8' to 24 6% 0% (NQ) 0.0' - Depth from 24.8' to 29 	.8' .8'	7 - 2 - 3 (5) (REC:0.2) 8 - 33 - 28 (61) (REC:0.9) 50/3" (50+) (REC:0.3) 50/5" (50+) (REC:0.4) 50/4" (50+) (REC:0.3) 14.8' / 888.2' msl 19.8' / 883.2' msl 24.8' / 878.2' msl	

BORING NO.: B-05 I-275 STATION NO.: 55+40 OFFSET: 22 L

PROJECT LOCATION: Knox County, Tennessee		
ELEVATION: 903 feet ± BORING STARTED: 12/29/2022	RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/4"
DRILLING METHOD: Hollow Stem Auger BORING COMPLETED: 12/29/2022	2 HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in
GROUNDWATER: Remarks: Remarks:		
G ELEV DEPTH MATERIAL DESCRIPTION L S		
ETHENDING CALCAREOUS SHALE, gray with tan, bedded, continuous, fair quality to excellent quality, 75° to 80° bedding angle, slightly weathered to fresh, medium(Continued) 863.2 40 Coring terminated at 39.8 feet	RUN 5 (NQ) RUN - 5.0' - Depth from 29.8' to 34. RQD - 84% REC - 100%(<i>Continued</i>) RUN 6 (NQ) RUN - 5.0' - Depth from 34.8' to 39. RQD - 96% REC - 100%	34.8' / 868.2' msl

BORING NO.: B-06 I-275 STATION NO.: 55+06 OFFSET: 22 L

PRC	JECT	LOCAT	ION:	Knox County, Tenne	ssee									
ELEVATION: 903 feet ± BORING STARTED					STARTED:	ARTED: 12/27/2022					RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/		
DRILLING METHOD: Hollow Stem Auger BORING C				COMPLETED: 12/28/2022						HAMMER: Automatic	CORE DIA.: NQ=1-7/8			
	OUNDV ATD	VATER:				Remarks:								
ò		ELEV DEPTH (FT.) (FT.) MATERIAL DESCRIPTIO							R M	PI	STANDARD PENET RESISTANCE (0 10 20 30 40			
	903.0_ 902.1- 899.0-	0	- 0.9'	Concrete, 11 inch FAT CLAY, (CH), soft, brown with re moist WEATHERED R0	trace san ed brown,	slightly	Fill		7			•13	(5	- 6 - 7 (13) REC:0.8) - 2 - 20 (22)
			-	wEATHERED K shale fragments, very dense, tan b fragments	medium d	ense to	Residuum						(F ≥>●50 (F ≥>●50 (F >>●50	2 = 20 (22) 2EC:0.9) (5" (50+) 2EC:0.4) (5" (50+) 2EC:0.3) (72" (50+) 2EC:0.2)
	885.4- 879.5= 879.4	 - 20 	23.5	CALCAREOUS S continuous, poor quality, 75° to 80° moderately weath medium	HALE, gr quality to bedding	ay, bedded, excellent angle,	Bedrock			RU RC RE RU RU RU	RQD - REC - S	2.0' - Depth from 17.6' to 19 40% (NQ) 5.0' - Depth from 19.6' to 24 100%	19.6' / 8	83.4' msl
	079.4		23.6' - - - -	CALCAREOUS S continuous, excel bedding angle, fre	lent qualit	y, 75° to 80°				RU RC	N - 5 D - 1	(NQ) 5.0' - Depth from 24.6' to 29 100% 00%	6'	78.4' msl 73.4' msl

BORING NO.: B-06 I-275 STATION NO.: 55+06 OFFSET: 22 L

PF	PROJECT: I-275 Bridge over Elm Street							JOB NO: 22430250 SHEET 2 OF 2			
PF	ROJECT	LOCATION	Knox County, Tennes	ssee							
EL	EVATIO	N: 903 fee	t ±	BORING	BORING STARTED: 12/27/2022			RIG TYPE:Diedrich D-50) BORING DIA. (IN): 3-1/4"		
DF	DRILLING METHOD: Hollow Stem Auger BORIN				ORING COMPLETED: 12/28/2022			HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in		
	ROUNDV y ATD	VATER:			Remarks:						
G	ELEV (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPT	ΓΙΟΝ	L	s				
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/10/23	863.4-		CALCAREOUS S continuous, excell bedding angle, fre medium(Continue	ent quality sh, <i>d)</i>	y, 75° to 80°			5.0' - Depth from 29.6' to 34 100% 100%(<i>Continued</i>) 5 (NQ) 5.0' - Depth from 34.6' to 39 100%	34.6' / 868.4' msl		

BORING NO.: B-07 I-275 STATION NO.: 55+39 OFFSET: 75 L

PR	OJECT	LOCAT	ON:	Knox County, Tenn	essee											
ELE	EVATIO	N: 904	feet :	±	BORING	STARTED:	12/2	20/20)22			RIG TYPE:Diedri	ch D-50	BORI	NG D	DIA. (IN): 3-1
DR	ILLING I	МЕТНО	D: R	ock Core	BORING	BORING COMPLETED: 12/20/2022					HAMMER: Auto	matic	CORE	E DIA	.: NQ=1-7/8	
	OUNDW ATD	/ATER:				Remarks:										
3	ELEV. (FT.)	DEPTH (FT.)		MATERIA	_ DESCRIP	TION		L	SF	м	PI	STANDARD RESIS	FANCE (N	I)		BLOWS/6'
	904.0_ 903.2= 903.0 901.0- 896.0- 892.0- 8892.0- 8892.0- 8882.0- 8882.0- 879.6- 878.7= 878.7= 878.7= 878.7= 878.7= 878.7=		0.8' = 1' 3' - 8' - 12' - 12' - 22' - 224.4' 25.3' 25.7' 25.8'	CALCAREOUS	2 inches 1 GRAVEL stiff, red bi 2 OCK, sam very dens 2 OCK, sam few silty c 1 OCK, sam few silty c 2 OCK, sam few silt, vo 2 OCK, sam few silt, vo	rown with ppled as se, tan ppled as clay, very prown, dry ppled as ery dense, dry ppled as ery dense, began NQ ray, bedded,	Fill Residuum Bedrock			RU RG	IN - 5 D - 6	(NQ) 5.1' - Depth from 24			>> >> >>	2 - 3 - 6 (9) (REC:0.8) 50/5" (50+) (REC:0.4) 50/3" (50+) (REC:0.3) 17 - 50/4" (50+ (REC:0.7) 50/2" (50+) (REC:0.2) 50/1" (50+) (REC:0.1)
	877.4 877.3 877.0 876.9		26.6 26.7 27 27 27.1	bedding angle, s fresh, medium Soil seam CALCAREOUS fairly continuous	lightly wea	thered to				RE	C - 9	90%			29.5'	/ 874.5' msl

BORING NO.: B-07 I-275 STATION NO.: 55+39 OFFSET: 75 L

PROJECT: I-275 Bridge over Elm Street		JOB NO: 22430250	SHEET 2 OF 2			
PROJECT LOCATION: Knox County, Tennes	ssee					
ELEVATION: 904 feet ±	BORING STARTED: 12/20/2022	RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/4"			
DRILLING METHOD: Rock Core	BORING COMPLETED: 12/20/2022	COMPLETED: 12/20/2022 HAMMER: Automatic				
GROUNDWATER: Dry ATD	Remarks:	· · ·				
G ELEV. DEPTH MATERIAL	DESCRIPTION L S					
-35 -35.5'= fairly continuous, ibedding angle, sliftresh, medium -35.7'= Soil seam -35.7'= CALCAREOUS S -40 - -40 - -40 Soil seam -41 Soil seam -41 Soil seam -41 Soil seam -42 Soil seam -45 Soil seam -50 CALCAREOUS S fairly continuous, ibedding angle, sliftresh, medium Soil seam Soil seam -50 Soil seam -50 Soil seam -50 Soil seam -50 Soil seam <td>HALE, gray, bedded fair quality, 75° to 80 ghtly weathered to HALE, gray, bedded fair quality, 75° to 80 ghtly weathered to HALE, gray, bedded, uality to excellent bedding angle, to fresh, medium</td> <td>RUN 2 (NQ) RUN - 5.0' - Depth from 29.5' to 34.5 RQD - 60% REC - 88%(Continued) RUN 3 (NQ) RUN - 5.0' - Depth from 34.5' to 39.5 RQD - 68% REC - 96% RUN 4 (NQ) RUN - 5.0' - Depth from 39.5' to 44.5 RQD - 96% REC - 100% RUN 5 (NQ) RUN - 5.0' - Depth from 44.5' to 49.5 RQD - 100% REC - 100%</td> <td> 34.5' / 869.5' msl</td>	HALE, gray, bedded fair quality, 75° to 80 ghtly weathered to HALE, gray, bedded fair quality, 75° to 80 ghtly weathered to HALE, gray, bedded, uality to excellent bedding angle, to fresh, medium	RUN 2 (NQ) RUN - 5.0' - Depth from 29.5' to 34.5 RQD - 60% REC - 88%(Continued) RUN 3 (NQ) RUN - 5.0' - Depth from 34.5' to 39.5 RQD - 68% REC - 96% RUN 4 (NQ) RUN - 5.0' - Depth from 39.5' to 44.5 RQD - 96% REC - 100% RUN 5 (NQ) RUN - 5.0' - Depth from 44.5' to 49.5 RQD - 100% REC - 100%	34.5' / 869.5' msl			

BORING NO.: B-08 I-275 STATION NO.: 55+04 OFFSET: 76 L

PROJE			Elm St								JOE	3 NC): 22430250)			SHEE	T 1	OF 2		
		N: 904 f			Junty,	Tenne			TARTED:	12	2/22/2	022			RIG TYPE:	Died	rich F	0-50	BORI		IA. (IN): 3-
				k Core					OMPLETE			-			HAMMER:					CORE DIA.: NQ=1-7/8 i	
GROUN Dry ATI	NDW						<u> </u>		Remarks:						<u> </u>						
		DEPTH (FT.)			MAT	FERIAL	DESCI	RIPTI	NC		L	S F	R M	PI		RESIS	STANC	CE (N)		30 9010	BLOWS/6
90 90 90 89	04.0		0.8' 1.3' 5.5'	Aggre FAT firm, FAT fragm moist WEA shale brown Auge coring CALC contin good	egate CLAY dark b CLAY nents, t THER fragn n, dry er refus g CARE nuous I qualit	sal at 1 OUS S to con	6 inche little re vith tar little s purple DCK, s very de 2.3 fee SHALE stinuou to 85°	et, be	red browr led as	Residuum Bedrock			RU RQ RE RU RU RQ RE RU RU RQ RE RU RU RU RU RU RU RU RU RU RU RU RU RU	N - 2 D - 6 C - 1 N 2 N - 5 D - 6 C - 9 N 3 N - 5 D - 7 C - 9 N 3 N - 5 D - 7 N 4	(NQ) .4' - Depth f 33% 00% (NQ) .0' - Depth f .0' - Depth f	rom 1	12.3' to) 14.7) 19.7	• • •	14.7', 19.7', 24.7',	3 - 4 - 3 (7) (REC:0.8) 2 - 9 - 42 (51) (REC:1.1) '50/4" (50+) (REC:0.3) '50/4" (50+) (REC:0.3) ' 889.3' msl / 884.3' msl / 884.3' msl

BORING NO.: B-08 I-275 STATION NO.: 55+04 OFFSET: 76 L

PF	ROJECT	: I-275 Brid	ge over Elm Street			JOB NO	D: 22430250	SHEET 2 OF 2
PF	ROJECT	LOCATION:	Knox County, Tenne	ssee				
EL	EVATIO	N: 904 feet	±	BORING STARTED:	12/22/202	22	RIG TYPE:Diedrich D-50	BORING DIA. (IN): 3-1/4"
DF	RILLING	Method: F	Rock Core	BORING COMPLETE	D: 12/22/20	22	HAMMER: Automatic	CORE DIA.: NQ=1-7/8 in
	ROUNDV y ATD	WATER:		Remarks:				
G	ELEV (FT.)	.DEPTH (FT.)	MATERIAL	DESCRIPTION	LS	6		
BORING RECORD S&ME - SPLIT LITHOLOGY 22430250.GPJ 2016.GDT 4/10/23	869.3-	 	continuous, excel	lent quality, 75° to 85 esh, medium last 0.5 not be retrieved from	Bedrock	RQD - 8 REC - 1 RUN 6	5.0' - Depth from 29.7' to 34. 38% 100% <i>(Continued)</i> (NQ) 5.0' - Depth from 34.7' to 39. 90%	34.7' / 869.3' msl

	BORING B-01, I-275, STATION 55+39, 75 FEET RIGHT: BOX 1 OF 4										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
1	21.4-25.1	84	95	CALCAREOUS SHALE, gray, continuous, good quality, 75 to 80 degree bedding, slight weathering to fresh,							
2	25.1-30.1	76	94	medium hard							

	BORING B-01, I-275, STATION 55+39, 75 FEET RIGHT: BOX 2 OF 4										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
3	30.1- 35.1	84	98	CALCAREOUS SHALE, gray, continuous, fair to excellent quality, 75 to 85 degree bedding, slight							
4	35.1- 40.1	96	100	weathering to fresh, medium hard							

	BORING B-01, I-275, STATION 55+39, 75 FEET RIGHT: BOX 3 OF 4										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
4 (cont'd)	35.1- 40.1	96	100								
5	40.1- 45.1	68	94	CALCAREOUS SHALE, gray, continuous, fair to excellent quality, 80 to 85 degree bedding, slight weathering to fresh, medium hard							
6	45.1- 50.1	96	96	weathening to nesh, medium hard							

	BORING B-01, I-275, STATION 55+39, 75 FEET RIGHT: BOX 4 OF 4									
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION						
6 (cont'd)	45.1- 50.1	96	96	CALCAREOUS SHALE, gray, continuous, fair to excellent quality, 80 to 85 degree bedding, slight weathering to fresh, medium hard						

	BO	RING B-0	2, I-275, STAT	ION 55+04, 75 FEET RIGHT: BOX 1 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
1	7.6-9.8	95	95	CALCAREOUS SHALE, gray with tan, continuous,
2	9.8-14.8	82	92	excellent to good quality, 80 to 85 degree bedding, slight
3	14.8-19.8	40	98	weathering to fresh, medium hard

	BO	RING B-02	2, I-275, STATI	ON 55+04, 75 FEET RIGHT: BOX 2 OF 4
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3 (cont'd)	14.8- 19.8	40	98	CALCAREOUS SHALE, gray with tan, continuous, poor quality, 80 to 85 degree bedding, slight weathering to
4	19.8- 24.8	40	100	fresh, medium hard

SEE TEST BORING RECORDS FOR FULL DESCRIPTION OF ROCK CORE

	BORING B-02, I-275, STATION 55+04, 75 FEET RIGHT: BOX 3 OF 4										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
5	24.8- 29.8	84	96	CALCAREOUS SHALE, gray with tan, continuous, good to excellent quality, 80 to 85 degree bedding, slight							
6	29.8- 34.8	90	94	weathering to fresh, medium hard							

	BORING B-02, I-275, STATION 55+04, 75 FEET RIGHT: BOX 4 OF 4										
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION							
6 (cont'd)	39.8- 34.8	90	94	CALCAREOUS SHALE, gray with tan, continuous, excellent to fair quality, 80 to 85 degree bedding, slight							
7	34.8- 37.8	67	100	weathering to fresh, medium hard							

	BORING B-03, I-275, STATION 55+41, 20 FEET RIGHT: BOX 1 OF 2							
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION				
1	13.7-14.8	64	82	CALCAREOUS SHALE, gray with tan, fairly continuous				
2	14.8-19.8	72	100	to continuous, fair to excellent quality, 75 to 80 degree				
3	19.8-24.8	96	100	bedding, moderately weathering to fresh, medium hard				

	BO	RING B-03	3, I-275, STATI	ON 55+41, 20 FEET RIGHT: BOX 2 OF 2
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3 (cont'd)	19.8- 24.8	96	100	CALCAREOUS SHALE, gray with tan, continuous, fair
4	24.8- 29.8	92	100	to excellent quality, 75 to 80 degree bedding, slight weathering to fresh, medium hard
5	29.8- 32.8	100	100	

	BORING B-04, I-275, STATION 55+05, 12 FEET RIGHT: BOX 1 OF 2						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
1	15.7-20	70	100	CALCAREOUS SHALE, gray with tan, continuous, poor to excellent quality, 75 to 80 degree bedding,			
2	20-25	98	100	moderately weathering to fresh, medium hard			

	BORING B-04, I-275, STATION 55+05, 12 FEET RIGHT: BOX 2 OF 2						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
3	25-30	100	100	CALCAREOUS SHALE, gray, continuous, excellent quality, 75 to 80 degree bedding, slight weathering to			
4	30-33.3	100	100	fresh, medium hard			

	BORING B-05, I-275, STATION 55+40, 22 FEET LEFT: BOX 1 OF 3						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
1	14.4-14.8	0	75	CALCAREOUS SHALE, gray with tan, incompetent to			
2	14.8-19.8	70	96	continuous, very poor to fair quality, 75 to 80 degree			
3	19.8-24.8	56	90	bedding, moderate weathering to fresh, medium hard			

	BORING B-05, I-275, STATION 55+40, 22 FEET LEFT: BOX 2 OF 3						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
4	24.8- 29.8	90	100	CALCAREOUS SHALE, gray with tan, continuous, poor quality, 80 to 85 degree bedding, slight weathering to			
5	29.8- 34.8	84	100	fresh, medium hard			

SEE TEST BORING RECORDS FOR FULL DESCRIPTION OF ROCK CORE

	BORING B-05, I-275, STATION 55+40, 22 FEET LEFT: BOX 3 OF 3					
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION		
6	34.8- 39.8	96	100	CALCAREOUS SHALE, gray with tan, continuous, excellent quality, 75 to 80 degree bedding, slight weathering to fresh, medium hard		

	BORING B-06, I-275, STATION 55+06, 22 FEET LEFT: BOX 1 OF 3							
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION				
1	17.6-19.6	40	90	CALCAREOUS SHALE, gray, continuous, poor to fair				
2	19.6-24.6	100	100	quality, 75 to 80 degree bedding, moderate weathering				
3	24.6-29.6	100	100	to fresh, medium hard				

	BO	RING B-0	6, I-275, STAT	ON 55+06, 22 FEET LEFT: BOX 2 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3 (cont'd)	24.6- 29.6	100	100	
4	29.6- 34.6	100	100	CALCAREOUS SHALE, gray, continuous, excellent quality, 75 to 80 degree bedding, fresh, medium hard
5	34.6- 39.6	100	100	

	BORING B-06, I-275, STATION 55+06, 22 FEET LEFT: BOX 3 OF 3					
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION		
5 (cont'd)	34.6- 39.6	100	100	CALCAREOUS SHALE, gray, continuous, excellent quality, 75 to 80 degree bedding, fresh, medium hard		

	BORING B-07, I-275, STATION 55+39, 75 FEET LEFT: BOX 1 OF 3						
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION			
1	24.4-29.5	67	90	CALCAREOUS SHALE, gray, continuous to fairly continuous, fair quality, 75 to 80 degree bedding, slightly			
2	29.5-34.5	60	88	weathering to fresh, medium hard			

	BO	RING B-0	7, I-275, STAT	ION 55+39, 75 FEET LEFT: BOX 2 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
2 (cont'd)	29.5- 34.5	60	88	CALCAREOUS SHALE, gray, fairly continuous to
3	34.5- 39.5	68	96	continuous, fair to excellent quality, 75 to 85 degree bedding, slightly weathering to fresh, medium hard
4	39.5- 44.5	96	100	

SEE TEST BORING RECORDS FOR FULL DESCRIPTION OF ROCK CORE

	BO	RING B-0	7, I-275, STAT	ION 55+39, 75 FEET LEFT: BOX 3 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
4 (cont'd)	39.5- 44.5	96	100	CALCAREOUS SHALE, gray, continuous, excellent
5	44.5- 49.5	100	100	quality, 80 to 85 degree bedding, slightly weathering to fresh, medium hard

	BO	RING B-	08, I-275, STA	TION 55+04, 76 FEET LEFT: BOX 1 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
1	12.3-14.7	63	100	CALCAREOUS SHALE, gray, continuous, fair to good
2	14.7-19.7	62	98	quality, 75 to 85 degree bedding, slightly weathering to
3	19.7-24.7	76	92	fresh, medium hard

	BO	RING B-0	8, I-275, STAT	ION 55+04, 76 FEET LEFT: BOX 2 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
3 (cont'd)	19.7- 24.7	76	92	CALCAREOUS SHALE, gray, continuous, good to
4	24.7- 29.7	84	98	excellent quality, 75 to 85 degree bedding, slightly weathering to fresh, medium hard
5	29.7- 34.7	88	100	

	BO	RING B-0	8, I-275, STAT	ION 55+04, 76 FEET LEFT: BOX 3 OF 3
RUN	DEPTH (FT)	RQD (%)	RECOVERY (%)	ROCK DESCRIPTION
5 (cont'd)	29.7- 34.7	88	100	CALCAREOUS SHALE, gray, continuous, excellent
6	34.7- 39.7	90	90	quality, 75 to 85 degree bedding, fresh, medium hard

Appendix III

Laboratory Test Procedures

Laboratory Test Results

NATURAL MOISTURE AASHTO T 265

The moisture content of soils is an indicator of various physical properties, including strength and compressibility. Selected samples obtained during exploratory drilling were taken from their sealed containers. Each sample was weighed and then placed in an oven heated to $110^{\circ}C \pm 5^{\circ}C$. The sample remained in the oven until the free moisture had evaporated. The dried sample was removed from the oven, allowed to cool, and re-weighed. The moisture content was computed by dividing the weight of evaporated water by the weight of the dry sample. The results, expressed as a percent, are shown on the attached Laboratory Test Results Summary.

ATTERBERG LIMITS DETERMINATION AASHTO T89/T90

Representative samples were subjected to Atterberg limits testing to determine the soil's plasticity characteristics. The plasticity index (PI) is the range of moisture content over which the soil deforms as a plastic material. The liquid limit (LL) marks the transition from the plastic state to the liquid state. The plastic limit (PL) marks the transition from the plastic state to the solid state.

To determine the liquid limit, a soil specimen is wetted until it is in a viscous fluid state. A portion of this soil is then placed in a brass cup of standardized dimensions, and a groove made through the middle of the soil specimen with a grooving tool of standardized dimensions. The cup is attached to a cam that lifts the cup 10 mm, and then allows the cup to fall and strike a rubber base of standardized hardness. The cam is rotated at approximately 2 drops per second until the two halves of the soil specimen come in contact at the bottom of the groove along a distance of 13 mm. The number of blows required to make this degree of contact is recorded, and a portion of the specimen is subjected to a moisture content determination. Additional water is added to the remainder of the specimen, and the grooving process and cam action process repeated. This testing sequence is repeated until the soil flows as a heavy viscous fluid. The number of blows vs. moisture content is then plotted on semi-logarithmic graph paper, and the moisture content corresponding to 25 blows is designated the liquid limit.

The plastic limit is the lowest moisture content at which the soil is sufficiently plastic to be manually rolled into threads 3 mm in diameter. It is determined by taking a pat of soil remaining from the liquid limit test, and repeatedly rolling, kneading, and air drying the specimen until the soil breaks into threads approximately 3 mm in diameter and 3 to 10 mm long. The moisture content of these soil threads is then determined, and is designated the plastic limit. The results of these tests are presented on the Laboratory Test Results Summary.

GRAIN SIZE TEST PROCEDURES AASHTO T 88

The grain size distribution of soil particles is an indicator of certain physical properties including permeability, compaction characteristics, consolidation, shrinkage and swelling, liquefaction, and other engineering properties. For this project, grain size distribution of soils was needed to determine AASHTO classifications of the soil. The soil specimen is dried then passed through a series of nested sieves. The portion of soil retained on each sieve is weighted and the percent of the total sample retained is computed. The percent passing the number 200 sieve is provided on the Laboratory Test Results

Summary. Hydrometer analyses were also performed and grain size distribution curves were developed. The Particle Size Analysis of Soils test reports are included in this Appendix.

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK ASTM D7012, Method C

A rock core specimen is cut to length and the ends are machined flat. The specimen is placed in a loading frame (with no confining). The axial load on the specimen is then increased and measured until the peak load and failure are obtained. The test results are provided on the Uniaxial Compressive Strength of Rock Test Reports and/or presented on the laboratory test results summary.

Form No: TR-D2216-T265-1 Revision No. 1 Revision Date: 08/16/17

LABORATORY DETERMINATION OF WATER CONTENT

	8
Ц	

Quality A	ssurance	AS	STM D 22	16	AASHTO T 2	265 🔽			
		S&ME, In	c Knoxv	/ille: 1413 To	pside Road, L	ouisville, TN 3.	7777		
Project #	t: 2243	30250				Report D	Date:	2/10/2023	
Project N	Name: I-27	5 Over Elm Str	eet			Test Dat	:e(s): 1/	26-29/2023	
Client Na									
Client Ac			ommons	Nay, Suite 525	, Brentwood,				
Sampled	,	/IE, Inc.				Sample Dat		/12-21/2022	
Sampling	g Method:	Split Spo	on				g # :	43-3763	
Metho	od: A (1%	6)	B (0.1)	%)	Balance ID. Oven ID.	18435 12872	Calibration D		
Boring	Sample	Sample	Tare #	Tare Weight	Tare Wt.+	Tare Wt. +	Water	Percent	N
No.	No.	Depth			Wet Wt	Dry Wt	Weight	Moisture	o t
		ft		grams	grams	grams	grams	%	e
B-01	SS-02	3.50	N5	31.44	81.28	79.29	1.99	4.2%	
B-10	SS-01	1.00	412	24.95	168.77	159.40	9.37	7.0%	
B-10	SS-02	3.50	406	25.15	129.25	110.41	18.84	22.1%	
B-10	SS-03	6.00	C-21	30.39	75.04	66.21	8.83	24.7%	
B-10	SS-04	8.50	421	25.23	179.31	157.05	22.26	16.9%	
B-10	SS-05	13.50	400	24.76	178.08	152.22	25.86	20.3%	
B-10	SS-06	18.50	410	25.22	203.75	160.35	43.40	32.1%	
B-10	SS-07	23.50	10-7	183.53	396.55	346.53	50.02	30.7%	
B-11	SS-01	1.00	434	25.12	184.81	178.69	6.12	4.0%	
B-11	SS-02	3.50	413	34.39	234.31	198.31	36.00	22.0%	
B-11	SS-03	6.00	418	25.02	189.49	151.06	38.43	30.5%	
B-11	SS-04	8.50	423	24.75	190.58	151.02	39.56	31.3%	
B-11	SS-05	13.50	445	25.21	159.97	126.41	33.56	33.2%	
B-11	SS-06	18.50	407	25.18	155.19	117.71	37.48	40.5%	
B-11	SS-07	23.50	Lee-B	33.04	201.48	155.92	45.56	37.1%	
B-11	SS-08	28.50	LP-1	42.74	282.28	182.94	99.34	70.9%	
B-11	SS-09	33.50	ЗK	40.29	230.43	156.01	74.42	64.3%	

Notes / Deviations / References

AASHTO T265: Laboratory Determination of Moisture Content of Soil

Kim Gonzalez Technician Name

Lindsey Deskins Technical Responsibility

<u>Kindsey Desterns</u> Signature

Lab Services Manager Position Date <u>2/10/2023</u>

1/27/2023

Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-D4318-T89-90 Revision No. 1 Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Quality A	ssurance AST	M D4318		AASHTO	т 89 🛙	X AA	SHTO T 90	\mathbf{X}			
	9	S&ME, In	c Knoxv	/ille: 14 ⁻	13 Topsid	le Road, L	ouisville,	TN 3777	7		
Project #						,	,	Report		2/10/20	123
Project N			root					Test Da		1/30/20	
Client Na			eei					Test Da	ate(3)	1/30/20	525
				N C 'I			T N 1				
Client Ac		wood Co				entwood,					
Boring #			Samp	le #: SS-0)2		Sam	•	: 12/21/20	22	
Log #:	43-3763							Depth	: 3.50 ft		
Descript				TH GRAVI							
	Specification	S&ME IL		Cal Date:		and Speci	fication	S8	xME ID #		Date:
Balance (1843		2/18/2022		oving tool			16015		/2022
LL Appara	atus	18414		8/10/2022		40 Sieve			31697	9/16	/2022
Oven	1	12872	2	7/21/2022							
Pan #	F	Tare #:	15	5	24	d Limit	[A2	Plastic Limi	t
	Tara Waight	Tale #.		15.29	15.33				A2 15.87		
A	Tare Weight		15.26								
В	Wet Soil Weight + A		29.74	30.72	31.45				24.09		
C	Dry Soil Weight + A		26.40	27.00	27.50				22.90		
D	Water Weight (B-C)		3.34	3.72	3.95				1.19		
E	Dry Soil Weight (C-A)	11.14	11.71	12.17				7.03		
F	% Moisture (D/E)*10	0	30.0%	31.8%	32.5%				16.9%		
Ν	# OF DROPS		33	25	18				Moisture C	ontents det	ermined by
LL	LL = F * FACT(OR							A,	ASHTO T 26	55
Ave.	Average									16.9%	
	-								One Point I	Liquid Lim	it
	5.0							Ν	Factor	Ν	Factor
	4.0							20	0.974	26	1.005
	3.0							21	0.979	27	1.009
Content 33	2.0		•					22	0.985	28	1.014
	1.0		$ \rightarrow $					23 24	0.99 0.995	29 30	1.018 1.022
	0.0		+	▶				24	1.000	30	1.022
2 isti	9.0								NP, Non-Pl	astic	
5 Moist	8.0								Liquid L		-
א ^{2′}	7.0								Plastic L		7
	6.0								Plastic I		_
	5.0										4
2.	10 15	20	25 30	35 40	# <u>.</u>	Drong	100		Group Syn		
	10	_0		50 10	# 0F	Drops			/ultipoint N		~
		Der		A1. D 1	ed 🗸			C	Dne-point N	rethod	
		Preparat		Air Drie		10	ion ort-				
Notes / D	eviations / References	Gro	սբ շջան	UT IS TOP I	minus inc	. 40 port	tion only.	•			

AASHTO T90: Determining the Plastic Lin	nit & Plastic Index of Soils	AASHTO T89: Determini	ng the Liquid Limit of Soils
<u>Kim Gonzalez</u> Technician Name	<u>1/31/2023</u> Date	Lindsey Deskins Technical Responsibility	<u>2/10/2023</u> Date
This report shall	not be reproduced, except in full, v	vithout the written approval of S&ME, Inc.	

3201 Spring Forest Road Raleigh, NC. 27616 AASHTO T89-T90 (B-01, SS-02, 3.50 ft) .xlsx Page 1 of 1

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

Log No. 43-3763	Д	ASHTO T 88		
	S&ME, Inc Knoxville: 14	13 Topside Road, Louisv	ille, TN 37777	
S&ME Project #:	22430250		Report Date:	2/10/2023
Project Name:	I-275 Over Elm Street		Test Date(s):	1/31/2023
Client Name:	HDR			
Address:	120 Brentwood Commons Way, Suit	e 525, Brentwood, TN		
Sample ID:	B-01 Sam	ple #: SS-02	Sample Date:	12/21/22
Location:	Boreholes		Depth:	3.50 ft
Sample Description:	CLAYEY SAND WITH (GRAVEL (SC), gray		A-2-7
	1" 3/4" 1/2" 3/8" #4 #10 #2	0 #40 #60 #140 #200		
100%				
90%				
	<u> </u>			
80%				
70%				
bercent Passing 40%	+ + ++++ X			
L 50%				
50%				
3 40%				
30%				
20%				
10%				
0%				
100	10 1	0.1	0.01	0.001
	Par	ticle Size (mm)		
			0.425	1 0.075 (#200
Gravel	<pre>< 75 mm and > 2.00 mm (#1</pre>	0) Fine Sand		<u>id > 0.075 mm (#200</u> nd > 0.002 mm
Coarse Sand	< 2.00 mm and > 0.425 mm (#).002 mm
Maximum Par	•	Gravel: 26.8		Silt 25.1%
Silt & Clay (% Pass	5	Total Sand: 38.9		Clay 9.2%
Assumed Speci	•	isture Content 4.2		
	iquid Limit 31	Plastic Limit 17		
	arse Sand: 29.6%		Fine S	
Description of Sand and G	Ţ			thered & Friable □
Mechanical Stirring Appara		min. Dispersing Agent:	Sodium Hexametaphosph	ate: 40 g./ Liter
References / Comments	/ Deviations: AASHTO T 88, T 89	, I 90, M 145		
	24	1	D :	2/10/2022
		lane. A		
<u>Victoria lo</u> Technical Respon		<u>Associate</u>	<u>Project Manager</u> Position	<u>2/10/2023</u> Date

3201 Spring Forest Road Raleigh, NC. 27616 T 88 GS w Hydro (B-01, SS-02, 3.50 ft).xlsx Page 1 of 1

UNCONFINED COMPRESSION (ASTM D7012 Method C)

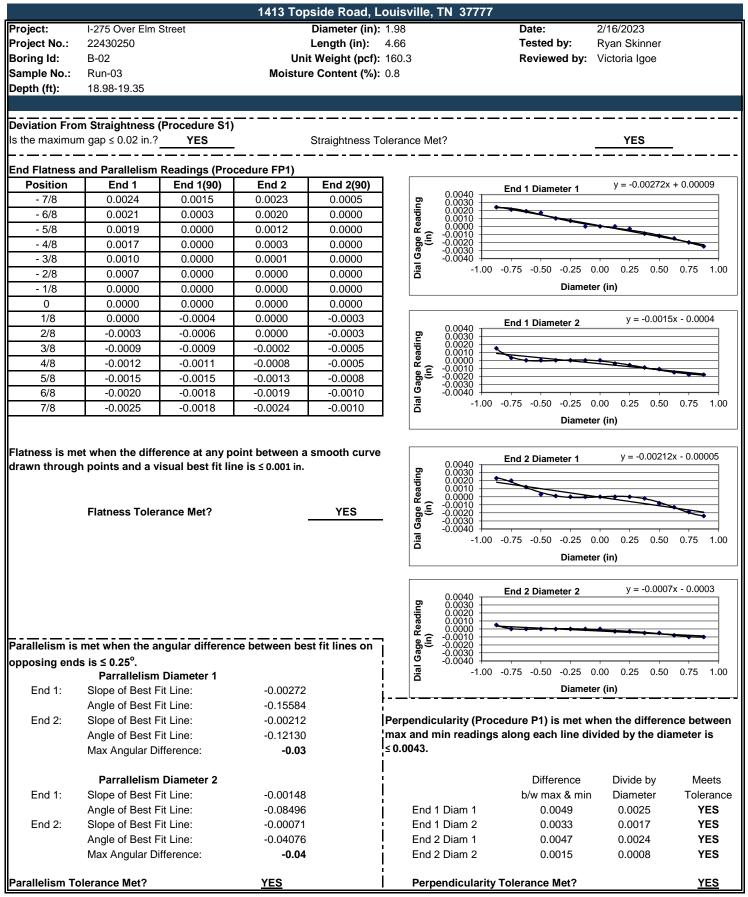
S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project Name: I-275 Over Elm Street Project Number: 22430250

Report Date: February 17, 2023 Reviewed By: Victoria Igoe

Poring No.	Sample	Depth	Dimens	ions, in.	Shape	Area	Unit Weight	Loading Rate	Maximum	Strength	Moisture
Boring No.	No.	(ft)	Length	Diameter	(See Key)	(in ²)	(lbs/ft ³)	(psi/sec)	Load (lbs)	(psi)	(%)
B-02	Run-03	18.98-19.35	4.66	1.98	А	3.08	160.3	58	13,792	4,478	0.8
B-03	Run-02	15.18-15.55	4.45	1.98	А	3.08	157.4	57	12,390	4,023	1.4
B-04	Run-01	17.86-18.22	4.55	1.98	А	3.08	166.9	66	18,518	6,012	0.9
B-07	Run-01	26.70-27.07	4.18	1.97	А	3.05	163.5	57	12,150	3,984	0.9

NOTES: Effective (as received) unit weight as determined by RTH 109-93.

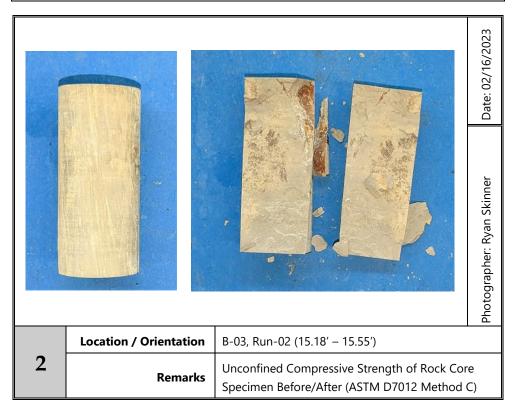

Loading rates were selected to target reaching failure between 2 and 15 minutes. Cores did not meet strength to satisfy this time window for failure Test results for specimens not meeting the requirements of ASTM D4543-19 may differ from a test specimen that meets the requirements of ASTM D4543.

SHAPE KEY

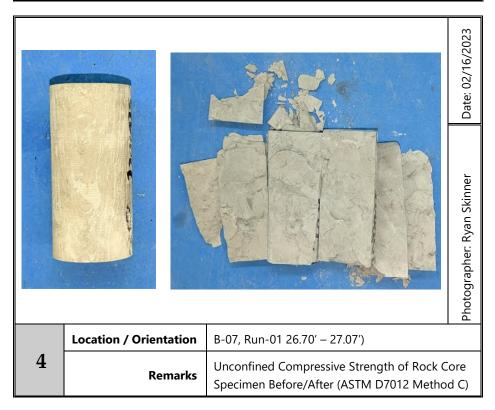
ASTM D4543-19 Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial and error that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort and report it as such and if allowable or necessary for the intended test, capping the ends of the specimen as discussed in this practice is permitted."

- A Test specimen measurements met the desired shape tolerances of ASTM D4543-19 (side straightness, end flatness & parallelism, and end perpendicularity to axis)
- B Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness & parallelism, and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness. Specimen prepared to closest tolerances practicable.
- C Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness & parallelism. Specimen did not meet the desired tolerances for side straightness and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- D Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness. Specimen did not meet the desired tolerances for side straightness, parallelism and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- E Test specimen measurements met the desired shape tolerances of ASTM D4543-19 for end flatness and end perpendicularity to axis. Specimen did not meet the desired tolerance for side

Project:	I-275 Over Elm	Street		oside Road, L Diameter (in):			Date:	2/16/2023	
roject No.:	22430250	Sheet		Length (in):			Tested by:	Ryan Skinner	
oring Id:	B-03		Uni	it Weight (pcf):			Reviewed by:	•	
ample No.:	Run-02			e Content (%):			Reviewed by.	viciona igoe	
epth (ft):	15.18-15.55		WOIStu	e coment (70).	1.4				
eptii (it).	13.10-13.33								
	m Straightness			o					
s the maximur	n gap ≤ 0.02 in.?	YES		Straightness T	olerance Me	et ?		YES	
nd Flatness	and Parallelism	Readings (Pro	cedure FP1)						
Position	End 1	End 1(90)	End 2	End 2(90)	1		End 1 Diamator 1	y = -0.0027	x - 0.0003
- 7/8	0.0024	0.0000	0.0026	0.0017	5	0.0040 - 0.0030 - 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0030 - -0.0040 -	End 1 Diameter 1	y = -0.0027	x - 0.0003
- 6/8	0.0020	0.0000	0.0020	0.0012	din	0.0020 -			
- 5/8	0.0015	0.0000	0.0018	0.0010	Rea	0.0010 - 0.0000 -			
- 4/8	0.0007	0.0000	0.0010	0.0006	e e	-0.0010 - -0.0020 -			
					- ac	-0.0030 -			
- 3/8	0.0002	0.0000	0.0010	0.0004	Dial Gage Reading (in)	-0.0040 - -1.	00 -0.75 -0.50 -0.25 (0.00 0.25 0.50	0.75 1.00
- 2/8	0.0000	0.0000	0.0006	0.0000					
- 1/8	0.0000	0.0000	0.0000	0.0000			Diamet	er (III)	
0	0.0000	0.0000	0.0000	0.0000					
1/8	-0.0003	-0.0006	0.0000	-0.0006		0.0040	End 1 Diameter 2	y = -0.0005	x - 0.0003
2/8	-0.0012	-0.0007	-0.0002	-0.0007	- Bu	0.0040			
3/8	-0.0013	-0.0008	-0.0007	-0.0009	Gage Reading (in)	0.0020 - 0.0010 -			
4/8	-0.0020	-0.0009	-0.0013	-0.0012	e Re	0.0000 - -0.0010 -			
5/8	-0.0023	-0.0009	-0.0019	-0.0014	(iri	-0.0020 - -0.0030 -			
6/8	-0.0023	-0.0007	-0.0021	-0.0016	<u></u>	-0.0030 -			
7/8	-0.0023	0.0000	-0.0023	-0.0018	Dial		00 -0.75 -0.50 -0.25	0.00 0.25 0.50	0.75 1.00
	et when the diffe h points and a v			smooth curve		0.0040 - 0.0030 - 0.0020 - 0.0010 -	Diamet	y = -0.00271x	+ 0.00006
		isual best fit lin		smooth curve	Dial Gage Reading (in)	0.0010 - 0.0000 - -0.0010 - -0.0020 - -0.0030 - -0.0040 -	End 2 Diameter 1	y = -0.00271x	
rawn througi arallelism is	h points and a v Flatness Toler met when the a	isual best fit lin ance Met?	ne is ≤ 0.001 in.	YES	- Dial Gage Reading (in)	0.0010 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - 0.0030 - 0.0020 - 0.0020 - 0.0020 - 0.0020 - 0.0020 - 0.0020 -	End 2 Diameter 1	y = -0.00271x	0.75 1.00
rawn throug	h points and a v Flatness Toler met when the at s is ≤ 0.25°.	ance Met? ance Met?	ne is ≤ 0.001 in.	YES	Gage Reading (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. -0.0040 - -1. -0.0020 - 0.0020 - 0.0020 - -0.0010 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 -	End 2 Diameter 1	y = -0.00271x y = -0.00271x y = -0.00192 y = -0.00192	0.75 1.00 x - 0.0002
arallelism is pposing end	h points and a v Flatness Toler met when the a s is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular difference Diameter 1	ie is ≤ 0.001 in. ce between be	YES st fit lines on	- Dial Gage Reading (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. -0.0040 - -1. -0.0020 - 0.0020 - 0.0020 - -0.0010 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 -	End 2 Diameter 1	y = -0.00271x $y = -0.00271x$ $y = -0.0019x$ $y = -0.0019x$ $y = -0.0019x$ $y = -0.0019x$	0.75 1.00
rawn througi arallelism is	h points and a v Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular differend Diameter 1 it Line:	e is ≤ 0.001 in. ce between be -0.00273	YES st fit lines on	Gage Reading (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. -0.0040 - -1. -0.0020 - 0.0020 - 0.0020 - -0.0010 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 -	End 2 Diameter 1	y = -0.00271x $y = -0.00271x$ $y = -0.0019x$ $y = -0.0019x$ $y = -0.0019x$ $y = -0.0019x$	0.75 1.00 x - 0.0002
rawn throug arallelism is oposing end End 1:	h points and a v Flatness Toler Met when the a s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differend Diameter 1 it Line: it Line:	te is ≤ 0.001 in. ce between be -0.00273 -0.15666	YES st fit lines on	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. -0.0040 - -1. -0.0020 - 0.0010 - -0.0020 - -0.0010 - -0.0020 - -0.0010 - -1.	End 2 Diameter 1	y = -0.00271x 0.00 0.25 0.50 er (in) $y = -0.0019;$ 0.00 0.25 0.50 er (in)	0.75 1.00 x - 0.0002
rawn throug arallelism is oposing end	n points and a v Flatness Toler Met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differend Diameter 1 it Line: it Line: it Line:	e is ≤ 0.001 in. ce between be -0.00273	YES st fit lines on	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0010 - -0.0010 - -1. -0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0010 - -0.0020 - -0.0010	End 2 Diameter 1 00 -0.75 -0.50 -0.25 0 Diameter 2 End 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2	y = -0.00271x , , , , , , , , , , , , , , , , , , ,	0.75 1.00 x - 0.0002
awn throug mallelism is posing end End 1:	h points and a v Flatness Toler Met when the a s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differend Diameter 1 it Line: it Line: it Line:	te is ≤ 0.001 in. ce between be -0.00273 -0.15666	YES st fit lines on	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0010 - -0.0010 - -1. -0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0010 - -0.0020 - -0.0010	End 2 Diameter 1	y = -0.00271x , , , , , , , , , , , , , , , , , , ,	0.75 1.00 x - 0.0002
rallelism is posing end End 1:	n points and a v Flatness Toler Met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differend Diameter 1 it Line: it Line: it Line: it Line: it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271	YES	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0010 - -0.0010 - -1. -0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0010 - -0.0020 - -0.0010	End 2 Diameter 1 00 -0.75 -0.50 -0.25 0 Diameter 2 End 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2	y = -0.00271x , , , , , , , , , , , , , , , , , , ,	0.75 1.00 x - 0.0002
awn throug mallelism is posing end End 1:	h points and a v Flatness Toler Teleform Flatness Toler Met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular differend Diameter 1 it Line: it Line: it Line: it Line: it Line: fference:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535	YES	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -1.	End 2 Diameter 1 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 Diameter 2	y = -0.00271x y = -0.00271x y = -0.0019; y = -0.0019; y = -0.0019; y = -0.0019; y = -0.0019; hen the differen vided by the diar	0.75 1.00 x - 0.0002
awn throug arallelism is oposing end End 1: End 2:	h points and a v Flatness Toler Flatness Toler met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism	isual best fit lin ance Met? ngular differend Diameter 1 it Line: it Line: it Line: it Line: fference: Diameter 2	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535 0.00	YES	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -1.	End 2 Diameter 1 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 Diameter 2 Difference	y = -0.00271x y = -0.00271x y = -0.0019x y = -0.001	0.75 1.00 x - 0.0002 0.75 1.00 ce betwee meter is Meets
awn throug arallelism is oposing end End 1:	h points and a v Flatness Toler Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin ance Met? Diameter 1 it Line: it Line: it Line: fference: Diameter 2 it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535	YES	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -1.	End 2 Diameter 1 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 Diameter 2	y = -0.00271x y = -0.00271x y = -0.0019; y = -0.0019; y = -0.0019; y = -0.0019; y = -0.0019; hen the differen vided by the diar	0.75 1.00 x - 0.0002 0.75 1.00 ce betwee meter is Meets
awn throug arallelism is oposing end End 1: End 2:	h points and a v Flatness Toler Flatness Toler met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism	isual best fit lin ance Met? Diameter 1 it Line: it Line: it Line: fference: Diameter 2 it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535 0.00	YES	Dial Gage Reading (in) (in) (in) (in) (in) (in) (in) (in)	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -1.	End 2 Diameter 1 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 00 -0.75 -0.50 -0.25 O Diameter 2 Diameter 2 Difference	y = -0.00271x y = -0.00271x y = -0.0019x y = -0.001	0.75 1.00 x - 0.0002 0.75 1.00 ce betwee meter is
awn throug arallelism is oposing end End 1: End 2:	h points and a v Flatness Toler Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin ance Met? Diameter 1 it Line: it Line: it Line: fference: Diameter 2 it Line: it Line: it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535 0.00 -0.00048	YES	Dial Gage Reading Dial Gage Reading (in) Eud and Laboratoria	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -1.	End 2 Diameter 1 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 Difference b/w max & min	y = -0.00271x y = -0.00271x y = -0.0019x y = -0.001	0.75 1.00 x - 0.0002 0.75 1.00 ce betwee meter is Meets Tolerand
arallelism is oposing end End 1: End 2: End 1:	h points and a v Flatness Toler Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F	isual best fit lin ance Met? ance Met? Diameter 1 it Line: it Line: it Line: ifference: Diameter 2 it Line: it Line: it Line: it Line: it Line: it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535 0.00 -0.00048 -0.02734	YES	Dial Gage Reading Dial Gage Reading (in) Euq : Eud : Eud :	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0010 - 0.0020 - -0.0030 - -0.0020 - -0.0030 - -1.	End 2 Diameter 1 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 Difference D/W max & min 0.0047	y = -0.00271x y = -0.00271x y = -0.0019x y = -0.0019x	0.75 1.00 x - 0.0002 0.75 1.00 ce betwee meter is Meets Tolerand YES
arallelism is posing end End 1: End 2: End 1:	h points and a v Flatness Toler Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? Diameter 1 it Line: it Line: it Line: fference: Diameter 2 it Line: it Line: it Line: it Line: it Line: it Line: it Line: it Line: it Line: it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535 0.00 -0.00048 -0.02734 -0.02734 -0.00190	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading End 2 End 2 End 2 End 2	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0030 - -0.0040 - -0.0030 - -0.0010 - -0.0010 - -0.0010 - -0.0010 - -0.0010 - -0.0010 - -0.0010 - -0.0020 - -1. Cularity (P nin readiti 1 Diam 1 1 Diam 1	End 2 Diameter 1 00 -0.75 -0.50 -0.25 0 Diameter 2 End 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 Difference b/w max & min 0.0047 0.0009	y = -0.00271x y = -0.00271x y = -0.0019x y = -0.001	0.75 1.00 x - 0.0002 0.75 1.00 ce betwee meter is Meets Tolerand YES YES
rawn throug arallelism is pposing end End 1: End 2: End 1:	h points and a v Flatness Toler Flatness Toler met when the al s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? Diameter 1 it Line: it Line: it Line: fference: Diameter 2 it Line: it Line: it Line: it Line: it Line: it Line: it Line: it Line: it Line: it Line:	e is ≤ 0.001 in. ce between be -0.00273 -0.15666 -0.00271 -0.15535 0.00 -0.00048 -0.02734 -0.02734 -0.02734 -0.00190 -0.10870	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading End 2 End 2 End 2 End 2	0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0030 - -0.0040 - -1. 0.0020 - 0.0010 - -0.0010 - -0.0020 - -0.0010 - -0.0020 - -0.0030 - -0.0030 - -0.0040 - -1. cularity (P nin readin 1 Diam 1 1 Diam 2 2 Diam 1	End 2 Diameter 1 00 -0.75 -0.50 -0.25 0 Diameter 2 End 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 00 -0.75 -0.50 -0.25 0 Diameter 2 Diameter 2 Difference b/w max & min 0.0047 0.0009 0.0049	y = -0.00271x y = -0.00271x y = -0.0019x y = -0.001	0.75 1.00 x - 0.0002 0.75 1.00 0.75 1.00 ce betwee meter is Meets Tolerand YES YES YES


			1413 10	bside Road, L	ouisville,	TN 3777	77		
Project:	I-275 Over Elm S	Street		Diameter (in):	1.98		Date:	2/16/2023	
Project No.:	22430250			Length (in):	4.55		Tested by:	Ryan Skinner	
Boring Id:	B-04		Uni	it Weight (pcf):	166.9		Reviewed by:	Victoria Igoe	
Sample No.:	Run-01		Moistur	e Content (%):	0.9				
Depth (ft):	17.86-18.22								
Deviation Fror	m Straightness ((Procedure S1)							
s the maximum	m gap ≤ 0.02 in.?	YES		Straightness To	olerance Me	et?		YES	
	and Parallelism								
Position	End 1	End 1(90)	End 2	End 2(90)		0.0040 -	End 1 Diameter 1	y = 0.00039x	- 0.00007
- 7/8	-0.0006	0.0003	-0.0014	0.0016	b u	0.0040			
- 6/8	-0.0006	0.0000	-0.0013	0.0010	ead	0.0020 - 0.0010 -			
- 5/8	-0.0006	0.0000	-0.0013	0.0002	Dial Gage Reading (in)	0.0000 -			
- 4/8	0.0000	0.0000	-0.0011	0.0002		-0.0020 -			
- 3/8	0.0000	0.0000	-0.0010	0.0000	C I	-0.0040 +	00 075 050 055		0.75 1.05
- 2/8	0.0000	0.0000	-0.0008	0.0000	Dia	-1.	00 -0.75 -0.50 -0.25	0.00 0.25 0.50	0.75 1.00
- 1/8	0.0000	0.0000	-0.0001	0.0000			Diame	eter (in)	
0	0.0000	0.0000	0.0000	0.0000					
1/8	0.0001	-0.0001	0.0000	0.0000			End 1 Diameter 2	y = -0.0004	x - 0.0001
2/8	0.0001	-0.0001	0.0000	-0.0004	<u></u>	0.0040 0.0030 0.0020	i Bramotor Z	,	
3/8	0.0001	-0.0003	0.0000	-0.0006	adir	0.0020			
4/8	0.0001	-0.0004	0.0004	-0.0007	, Re	0.0000	•••••		
5/8	0.0001	-0.0005	0.0005	-0.0007	Gage Reading (in)	0.0020 0.0010 -0.0000 -0.0010 -0.0020 -0.0030			
6/8	0.0001	-0.0005	0.0005	-0.0007	ບິ	-0.0030 -			
7/8	0.0001	-0.0004	0.0005	-0.0012	Dial	-1.	00 -0.75 -0.50 -0.25	0.00 0.25 0.50	0.75 1.00
	et when the diffe h points and a vi	••		smooth curve		0.0040 1	Diame End 2 Diameter 1		3x - 0.0003
		isual best fit lin		smooth curve	Dial Gage Reading (in)	0.0040 0.0030 0.0020 0.0000 -0.0010 -0.0020 -0.0020 -0.0030 -0.0030 -0.0040 -1.0	End 2 Diameter 1	y = 0.0013	8x - 0.0003
rawn through arallelism is i	h points and a vi Flatness Toler Toler met when the ar	isual best fit lin ance Met? ngular differenc	ne is ≤ 0.001 in.	YES	Gage Reading (in) (in)	0.0010 - -0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. -0.0040 - -1. -0.0040 - -1. -0.0020 - -0.0040 - -0.0020 - -0.0040 -	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x	0.75 1.00
rawn through	h points and a vi Flatness Toler Flatness Toler s is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular differend Diameter 1 it Line:	ne is ≤ 0.001 in. ce between be 0.00039	YES	Dial Gage Reading	0.0010 - -0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. -0.0040 - -1. -0.0040 - -1. -0.0020 - -0.0040 - -0.0020 - -0.0040 -	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x	0.75 1.00
rawn through arallelism is i pposing ends	h points and a vi Flatness Toler Flatness Toler net when the ar s is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line:	ne is ≤ 0.001 in. 	YES	Dial Gage Reading (in) (in) (in)	0.0010 - -0.0020 - -0.0020 - -0.0040 - -0.0040 - -1.1 0.0020 - 0.0020 - 0.0020 - 0.0020 - 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1.1 -0.0040 - -1.1 -0.0040 - -0.0040	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x 0.00 0.25 0.50 eter (in) when the differer	0.75 1.00 - 0.00009 0.75 1.00
arallelism is i pposing ends End 1:	h points and a vi Flatness Toler Tolers Flatness Tolers Mertallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	te is ≤ 0.001 in. ce between be 0.00039 0.02226 0.00125 0.07170	YES	Dial Gage Reading Dial Gage Reading (in)	0.0010 - -0.0020 - -0.0020 - -0.0040 - -0.0040 - -1.1 0.0020 - 0.0020 - 0.0020 - 0.0020 - 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1.1 -0.0040 - -1.1 -0.0040 - -0.0040	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x 0.00 0.25 0.50 eter (in) when the different livided by the dia	0.75 1.00 - 0.00009 0.75 1.00 0.75 1.00 nce between meter is
rawn through arallelism is i pposing ends End 1: End 2:	h points and a vi Flatness Toler Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fit Line: fiference: Diameter 2	te is ≤ 0.001 in. ce between be 0.00039 0.02226 0.00125 0.07170 -0.05	YES	Dial Gage Reading Dial Gage Reading (in)	0.0010 - -0.0020 - -0.0020 - -0.0040 - -0.0040 - -1.1 0.0020 - 0.0020 - 0.0020 - 0.0020 - 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1.1 -0.0040 - -1.1 -0.0040 - -0.0040	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x 0.00 0.25 0.50 eter (in) 0.00 0.25 0.50 eter (in) when the different livided by the diat Divide by	0.75 1.00 - 0.00009 - 0.75 1.00 0.75 1.00 ce between meter is Meets
arallelism is i pposing ends End 1:	n points and a vi Flatness Toler Flatness Toler Toler Slope of Best F Angle of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fiference: Diameter 2 fit Line:	te is ≤ 0.001 in. ce between be 0.00039 0.02226 0.00125 0.07170 -0.05 -0.00038	YES	Dial Gage Reading Dial Gage Reading (in) (in) (in)	0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -1. c.0020 - -0.0020 - -	End 2 Diameter 1	y = 0.0013 $0.00 0.25 0.50$ eter (in) $y = -0.00116x$ $0.00 0.25 0.50$ eter (in) when the difference of the diagonal of the diagona	0.75 1.00 - 0.00009 0.75 1.00 0.75 1.00 Ince between meter is Meets Tolerance
arallelism is a pposing ends End 1: End 2: End 1:	h points and a vision of the points and a vision of the points and a vision of the point of	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fiference: Diameter 2 fit Line: fit Line: fit Line:	te is ≤ 0.001 in. ce between be 0.00039 0.02226 0.00125 0.07170 -0.05 -0.00038 -0.02161	YES	Dial Gage Reading Dial Gage Reading (in) Eud	0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -1. c.0020 - -0.0020 - -1. -0.0020 - -1. -1. -0.0020 - -1. -1. -1. -1. -1. -1. -1. -1. -1. -1	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x y = -0.00116x 0.00 0.25 0.50 eter (in) when the different dial when the different dial Divide by the dial Divide by the dial	0.75 1.00 - 0.00009 0.75 1.00 0.75 1.00 ce between meter is Meets Tolerance YES
arallelism is pposing ends End 1: End 2:	In points and a vision of the points and a vision of the points and a vision of the point of	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. ce between be 0.00039 0.02226 0.00125 0.07170 -0.05 -0.00038 -0.02161 -0.00116	YES	Dial Gage Reading Dial Gage Reading (in) Eud Eud	0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0040 - -1. 0.0020 - -0.0020 - -1. -0.0020 - -1. -1. -0.0020 - -1. -1. -1. -1. -1. -1. -1. -1. -1. -1	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x y = -0.00116x 0.00 0.25 0.50 eter (in) when the different livided by the diation Divide by n Diameter 0.0004 0.0004	0.75 1.00 - 0.00009 - 0.75 1.00 0.75 1.00 ce between meter is Meets Tolerance YES YES
arallelism is a pposing ends End 1: End 2: End 1:	h points and a vision of the points and a vision of the points and a vision of the point of	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. ce between be 0.00039 0.02226 0.00125 0.07170 -0.05 -0.00038 -0.02161	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading End End End End	0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0020 - -1. c.0020 - -0.0020 - -1. -0.0020 - -1. -1. -0.0020 - -1. -1. -1. -1. -1. -1. -1. -1. -1. -1	End 2 Diameter 1	y = 0.0013 0.00 0.25 0.50 eter (in) y = -0.00116x y = -0.00116x 0.00 0.25 0.50 eter (in) when the different dial when the different dial Divide by the dial Divide by the dial	0.75 1.00 - 0.00009 0.75 1.00 0.75 1.00 ce between meter is Meets Tolerance YES

			1413 10	oside Road, L		IN 3////			
Project:	I-275 Over Elm S	Street		Diameter (in):			Date:	2/16/2023	
Project No.:	22430250 Length (in): 4.18					Tested by:	Ryan Skinner		
Boring Id:	B-07			it Weight (pcf):		.5 Reviewed by: Victoria Igoe			
Sample No.:	Run-01		Moistur	re Content (%):	0.9				
Depth (ft):	26.70-27.07								
s the maximur	m Straightness (m gap ≤ 0.02 in.? and Parallelism End 1	YES		Straightness To	olerance Me	et?		YES	x - 0.0002
- 7/8	0.0023	0.0004	0.0023	-0.0005		0.0040	End 1 Diameter 1	y = -0.0025	x - 0.0002
- 6/8	0.0025	0.0004	0.0023	-0.0005	dinç	0.0020 +			
		0.0004			eac				
- 5/8	0.0015		0.0014	-0.0005	(in) ge	-0.0010 +	· · · · · · · · · · · · · · · · · · ·		
- 4/8	0.0011	0.0004	0.0010	-0.0005	Dial Gage Reading (in)	-0.0020 -0.0030 -0.0040			~
- 3/8	0.0011	0.0004	0.0005	-0.0005	ial	-0.0040 -1.00	-0.75 -0.50 -0.25 (0.00 0.25 0.50	0.75 1.00
- 2/8	0.0006	0.0000	0.0000	-0.0001			Diamete		
- 1/8	0.0000	0.0000	0.0000	0.0000			Diametr		
0 1/8	0.0000	0.0000	0.0000	0.0000					
	-0.0009		0.0000			0.0040	End 1 Diameter 2	y = -0.0018	x - 0.0006
2/8	-0.0014	-0.0008	-0.0006	-0.0009	ling	0.0030			
3/8	-0.0014	-0.0018	-0.0006	-0.0010	ead	0.0010		-	
4/8 5/9	-0.0015	-0.0018	-0.0014	-0.0010	Gage Reading (in)	-0.0010 -0.0020 -0.0030			
5/8 6/8	-0.0017 -0.0017	-0.0018	-0.0018	-0.0010	Gag	-0.0020			
7/8	_	-0.0022	-0.0020	-0.0010	Dial		-0.75 -0.50 -0.25 (0.00 0.25 0.50	0.75 1.00
//0	-0.0020	-0.0022	-0.0021	-0.0016					
	et when the diffe h points and a vi	••		i smooth curve		0.0040 0.0030 0.0020 0.0010	Diameter 1	y = -0.0024	x - 0.0001
		isual best fit lin		smooth curve	Dial Gage Reading (in)	0.0020 0.0010 -0.0000 -0.0010 -0.0020 -0.0030 -0.0040		y = -0.0024	
drawn throug	h points and a vi	isual best fit lin ance Met?	ie is ≤ 0.001 in.	YES	Dial Gage Reading	0.0020 0.0010 -0.0010 -0.0020 -0.0020 -0.0030 -0.0040 -1.00 0.0040 0.0020 0.0020 0.0010	End 2 Diameter 1	y = -0.0024	0.75 1.00
frawn throug Parallelism is	h points and a vi Flatness Toler met when the ar is is ≤ 0.25° .	isual best fit lin ance Met? ngular differenc	ie is ≤ 0.001 in.	YES	Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -1.00 0.0040 0.0020 0.0010 0.0020 0.0010 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00053	0.75 1.00
Parallelism is	h points and a vi Flatness Toler Met when the ar Is is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular differenc Diameter 1	e is ≤ 0.001 in. ce between be	YES st fit lines on	Dial Gage Reading	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -1.00 0.0040 0.0020 0.0010 0.0020 0.0010 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	y = -0.0024 0.00 0.25 0.50 er (in) $y = -0.00055$ 0.00 0.25 0.50	0.75 1.00
Irawn throug Parallelism is	h points and a vi Flatness Toler met when the al s is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 it Line:	ie is ≤ 0.001 in. ce between be -0.00253	YES	Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -1.00 0.0040 0.0020 0.0010 0.0020 0.0010 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	y = -0.0024 0.00 0.25 0.50 er (in) $y = -0.00055$ 0.00 0.25 0.50	0.75 1.00
rawn throug Parallelism is pposing end End 1:	h points and a vi Flatness Toler Met when the an is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 it Line: it Line:	te is ≤ 0.001 in. Ce between be -0.00253 -0.14520	YES	Dial Gage Reading (in) (in)	0.0020 0.0010 0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 0.0010 0.0020 0.0010 -0.0020 0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0040 -0.0040 -0.0020 -0.0040 -0.0	End 2 Diameter 1	y = -0.0024 y = -0.0025 y = -0.00055 y = -0.00055	0.75 1.00
rawn throug Parallelism is pposing end	h points and a vi Flatness Toler Flatness Toler is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239	YES	Dial Gage Reading Dial Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 0.0010 -0.0020 0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0030 -0.0030 -0.0040 -1.00 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040 -0.	End 2 Diameter 1	y = -0.0024 0.00 0.25 0.50 er (in) y = -0.00055 0.00 0.25 0.50 er (in) hen the difference	0.75 1.00
arallelism is pposing end End 1:	h points and a vi Flatness Toler Flatness Toler met when the ar is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702	YES	Dial Gage Reading Dial Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 0.0010 -0.0020 0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0030 -0.0030 -0.0040 -1.00 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040 -0.	End 2 Diameter 1	y = -0.0024 0.00 0.25 0.50 er (in) y = -0.00055 0.00 0.25 0.50 er (in) hen the difference	0.75 1.00
arallelism is pposing end End 1:	h points and a vi Flatness Toler Flatness Toler is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239	YES	Dial Gage Reading Dial Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 0.0010 -0.0020 0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0030 -0.0030 -0.0040 -1.00 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040 -0.	End 2 Diameter 1	y = -0.0024 0.00 0.25 0.50 er (in) y = -0.00055 0.00 0.25 0.50 er (in) hen the difference	0.75 1.00
arallelism is pposing end End 1:	h points and a vi Flatness Toler The state of the state state of the state of the state Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702	YES	Dial Gage Reading Dial Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 0.0010 -0.0020 0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0030 -0.0030 -0.0040 -1.00 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040 -0.	End 2 Diameter 1	y = -0.0024 0.00 0.25 0.50 er (in) y = -0.0005; 0.00 0.25 0.50 er (in) hen the differentiation of the diameter of the differentiation of the diameter of the diamet	0.75 1.00 (-0.0007 0.75 1.00 0.75 1.00 ce betweer neter is
rawn throug arallelism is pposing end End 1: End 2:	h points and a vi Flatness Toler Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fit Line: fiference: Diameter 2	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.01	YES	Dial Gage Reading Dial Gage Reading (in) (in)	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 0.0010 -0.0020 0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0030 -0.0030 -0.0040 -1.00 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040 -0.	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00052 er (in) y = -0.00052 y = -0.00052 er (in) hen the different vided by the dian Divide by	0.75 1.00 (-0.0007 0.75 1.00 0.75 1.00 ce betweer neter is Meets
rawn throug arallelism is pposing end End 1:	h points and a vi Flatness Toler Flatness Toler Marrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fiference: Diameter 2 fit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.01 -0.00178	YES	Dial Gage Reading Dial Gage Reading (in) (in) (in)	0.0020 0.0010 -0.0020 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 -1.00 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -0.0020 -1.00 -0.0020	End 2 Diameter 1	y = -0.0024 $y = -0.0024$ $y = -0.00052$ er (in) $y = -0.00052$ $y = -0.00052$ er (in) $y = -0.00052$ Divide by the diate by the dia	0.75 1.00 c - 0.0007 0.75 1.00 ce between neter is Meets Tolerance
rawn throug arallelism is pposing end End 1: End 2: End 1:	h points and a vi Flatness Toler Flatness Toler In the second second second s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fiference: Diameter 2 fit Line: fit Line: fit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.0178 -0.00178 -0.10182	YES	Dial Gage Reading Dial Gage Reading (in) Eud	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0030 -1.00 0.0020 0.0010 0.0020 0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -1.	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00052 er (in) y = -0.00052 y = -0.00052 er (in) hen the different vided by the dian Divide by Diameter 0.0022	0.75 1.00 (-0.0007 0.75 1.00 0.75 1.00 ce between neter is Meets Tolerance YES
arallelism is pposing end End 1: End 2:	h points and a vi Flatness Toler Flatness Toler met when the ar is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.0178 -0.00178 -0.00178 -0.10182 -0.00055	YES	Dial Gage Reading Dial Gage Reading (in) End End End	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0030 -1.00 0.0020 0.0010 0.0020 0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00053 er (in) y = -0.00053 er (in) y = -0.00053 er (in) hen the differentiation vided by the diation Divide by Diameter 0.0022 0.0013	0.75 1.00 (-0.0007 0.75 1.00 0.75 1.00 ce between neter is Meets Tolerance YES YES
rawn throug Parallelism is pposing end End 1: End 2: End 1:	h points and a vi Flatness Toler Flatness Toler met when the at is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.00178 -0.00178 -0.00178 -0.10182 -0.00055 -0.03143	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading (in) End End End End	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0030 -1.00 0.0040 0.0020 0.0010 0.0020 -0.0010 -0.0010 -0.0020 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -1.	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00052 er (in) y = -0.00052 y = -0.00052	0.75 1.00 a - 0.0007 a - 0.0
rawn throug Parallelism is pposing end End 1: End 2: End 1:	h points and a vi Flatness Toler Flatness Toler met when the ar is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.0178 -0.00178 -0.00178 -0.10182 -0.00055	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading (in) End End End End	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0030 -1.00 0.0020 0.0010 0.0020 0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00053 er (in) y = -0.00053 er (in) y = -0.00053 er (in) hen the differentiation vided by the diation Divide by Diameter 0.0022 0.0013	0.75 1.00 (-0.0007 0.75 1.00 0.75 1.00 ce between neter is Meets Tolerance YES YES
Parallelism is opposing end End 1: End 2: End 1: End 2:	h points and a vi Flatness Toler Flatness Toler met when the at is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. ce between be -0.00253 -0.14520 -0.00239 -0.13702 -0.00178 -0.00178 -0.00178 -0.10182 -0.00055 -0.03143	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading End End End End End	0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -0.0040 0.0040 0.0020 -1.00 0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -1.00 -1	End 2 Diameter 1	y = -0.0024 y = -0.0024 y = -0.00052 er (in) y = -0.00052 y = -0.00052	0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 ce between neter is Meets Tolerance YES YES YES YES



		Date: 02/16/2023	Uale. UZ/ 10/ 2020	
	Location / Orientation	B-02, Run-03 (18.98' – 19.35')		
1	Remarks	Unconfined Compressive Strength of Rock Core Specimen Before/After (ASTM D7012 Method C)		

			Photographer: Ryan Skinner Date: 02/16/2023
	Location / Orientation	B-04, Run-01 (17.86′ – 18.22′)	Pł
3	Remarks	Unconfined Compressive Strength of Rock C Specimen Before/After (ASTM D7012 Metho	

Appendix IV

Important Information about Your Geotechnical Engineering Report

Important Information About Your Geotechnical Engineering Report

Variations in subsurface conditions can be a principal cause of construction delays, cost overruns and claims. The following information is provided to assist you in understanding and managing the risk of these variations.

Geotechnical Findings Are Professional Opinions

Geotechnical engineers cannot specify material properties as other design engineers do. Geotechnical material properties have a far broader range on a given site than any manufactured construction material, and some geotechnical material properties may change over time because of exposure to air and water, or human activity.

Site exploration identifies subsurface conditions at the time of exploration and only at the points where subsurface tests are performed or samples obtained. Geotechnical engineers review field and laboratory data and then apply their judgment to render professional opinions about site subsurface conditions. Their recommendations rely upon these professional opinions. Variations in the vertical and lateral extent of subsurface materials may be encountered during construction that significantly impact construction schedules, methods and material volumes. While higher levels of subsurface exploration can mitigate the risk of encountering unanticipated subsurface conditions, no level of subsurface exploration can eliminate this risk.

Scope of Geotechnical Services

Professional geotechnical engineering judgment is required to develop a geotechnical exploration scope to obtain information necessary to support design and construction. A number of unique project factors are considered in developing the scope of geotechnical services, such as the exploration objective; the location, type, size and weight of the proposed structure; proposed site grades and improvements; the construction schedule and sequence; and the site geology.

Geotechnical engineers apply their experience with construction methods, subsurface conditions and exploration methods to develop the exploration scope. The scope of each exploration is unique based on available project and site information. Incomplete project information or constraints on the scope of exploration increases the risk of variations in subsurface conditions not being identified and addressed in the geotechnical report.

Services Are Performed for Specific Projects

Because the scope of each geotechnical exploration is unique, each geotechnical report is unique. Subsurface conditions are explored and recommendations are made for a specific project. Subsurface information and recommendations may not be adequate for other uses. Changes in a proposed structure location, foundation loads, grades, schedule, etc. may require additional geotechnical exploration, analyses, and consultation. The geotechnical engineer should be consulted to determine if additional services are required in response to changes in proposed construction, location, loads, grades, schedule, etc.

Geo-Environmental Issues

The equipment, techniques, and personnel used to perform a geo-environmental study differ significantly from those used for a geotechnical exploration. Indications of environmental contamination may be encountered incidental to performance of a geotechnical exploration but go unrecognized. Determination of the presence, type or extent of environmental contamination is beyond the scope of a geotechnical exploration.

Geotechnical Recommendations Are Not Final

Recommendations are developed based on the geotechnical engineer's understanding of the proposed construction and professional opinion of site subsurface conditions. Observations and tests must be performed during construction to confirm subsurface conditions exposed by construction excavations are consistent with those assumed in development of recommendations. It is advisable to retain the geotechnical engineer that performed the exploration and developed the geotechnical recommendations to conduct tests and observations during construction. This may reduce the risk that variations in subsurface conditions will not be addressed as recommended in the geotechnical report.